Skip to main content
Log in

XFEM modeling of hydraulic fracture in porous rocks with natural fractures

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. P. Bažant, M. Salviato, V. T. Chau, H. Visnawathan, and A. Zubelewicz, J. Appl. Mech. 81, 101010 (2014).

    Article  ADS  Google Scholar 

  2. T. K. Perkins, and L. R. Kern, J. Pet. Tech. 13, 937 (1961).

    Article  Google Scholar 

  3. J. Geertsma, and F. De Klerk, J. Pet. Tech. 21, 1571 (1969).

    Article  Google Scholar 

  4. A. Settari, and M. P. Cleary, SPE Prod. Eng. 1, 449 (1986).

    Article  Google Scholar 

  5. R. de Borst, Mech. Res. Commun. 80, 47 (2017).

    Article  Google Scholar 

  6. C. Y. Dong, and C. J. de Pater, Comp. Methods Appl. Mech. Eng. 191, 745 (2001).

    Article  ADS  Google Scholar 

  7. M. J. Hunsweck, Y. Shen, and A. J. Lew, Int. J. Numer. Anal. Meth. Geomech. 37, 993 (2013).

    Article  Google Scholar 

  8. Z. Chen, A. P. Bunger, X. Zhang, and R. G. Jeffrey, Acta Mech. Solid Sin. 22, 443 (2009).

    Article  Google Scholar 

  9. M.W. McClure, and R.N. Horne, Discrete Fracture Network Modeling of Hydraulic Stimulation: Coupling Flow and Geomechanics (Springer Briefs in Earth Sciences, New York, 2013), p. 17.

    Book  Google Scholar 

  10. C. Miehe, S. Mauthe, and S. Teichtmeister, J. Mech. Phys. Solids 82, 186 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  11. B. Lecampion, Commun. Numer. Meth. Engng. 25, 121 (2009).

    Article  MathSciNet  Google Scholar 

  12. D. D. Xu, Z. L. Liu, and Z. Zhuang, Sci. China-Phys. Mech. Astron. 59, 124631 (2016).

    Article  Google Scholar 

  13. Z. Q. Yue, H. T. Xiao, L. G. Tham, C. F. Lee, and E. Pan, Comput. Mech. 36, 459 (2005).

    Article  Google Scholar 

  14. N. Moës, and T. Belytschko, Eng. Fract. Mech. 69, 813 (2002).

    Article  Google Scholar 

  15. Z. Chen, J. Pet. Sci. Eng. 88-89, 136 (2012).

    Article  Google Scholar 

  16. T. J. Boone, and A. R. Ingraffea, Int. J. Numer. Anal. Methods Geomech. 14, 27 (1990).

    Article  Google Scholar 

  17. T. Mohammadnejad, and A. R. Khoei, Finite Elem. Anal. Des. 73, 77 (2013).

    Article  MathSciNet  Google Scholar 

  18. B. Carrier, and S. Granet, Eng. Fract. Mech. 79, 312 (2012).

    Article  Google Scholar 

  19. S. Salehi, and R. Nygaard, J. Energ. Resour. Technol. 137, 012903 (2015).

    Article  Google Scholar 

  20. Z. A. Wilson, and C. M. Landis, J. Mech. Phys. Solids 96, 264 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  21. K. Terzaghi, Erdbaumechanik auf Bodenphysikalischer Grundlage (Deuticke, Wien, 1925), p. 47.

    MATH  Google Scholar 

  22. M. A. Biot, J. Appl. Phys. 12, 155 (1941).

    Article  ADS  Google Scholar 

  23. O. Coussy, Mechanics of Porous Continua (John Wiley & Sons, Hoboken, 1995), p. 15.

    MATH  Google Scholar 

  24. E. Detournay, and H. D. C. Alexander, Fundamentals of Poroelasticity (Pergamon Press, C. Fairhurst, 1993), p. 113.

    Google Scholar 

  25. W. Ehlers, Foundations of Multiphasic and Porous Materials (Springer Berlin Heidelberg, Heidelberg, 2002), p. 3.

    MATH  Google Scholar 

  26. Q. Zeng, Z. Liu, D. Xu, H. Wang, and Z. Zhuang, Int. J. Numer. Meth. Eng. 106, 1018 (2016).

    Article  Google Scholar 

  27. D. Xu, Z. Liu, X. Liu, Q. Zeng, and Z. Zhuang, Comput. Mech. 54, 489 (2014).

    Article  MathSciNet  Google Scholar 

  28. Z. Zhuang, Z. L. Liu, B. B. Cheng, and J. H. Liao, Extended Finite Element Method (Elsevier/Tsinghua University Press, Beijing, 2014), p. 189.

    Book  Google Scholar 

  29. Q. L. Zeng, Z. L. Liu, D. D. Xu, and Z. Zhuang, Sci. China Technol. Sci. 57, 1276 (2014).

    Article  Google Scholar 

  30. M. Faivre, B. Paul, F. Golfier, R. Giot, P. Massin, and D. Colombo, Eng. Fract. Mech. 159, 115 (2016).

    Article  Google Scholar 

  31. S. Salimzadeh, and N. Khalili, Comp. Geotech. 69, 82 (2015).

    Article  Google Scholar 

  32. E. Gordeliy, and A. Peirce, Comp. Methods Appl. Mech. Eng. 283, 474 (2015).

    Article  ADS  Google Scholar 

  33. T. Mohammadnejad, and A. R. Khoei, Int. J. Numer. Anal. Meth. Geomech. 37, 1247 (2013).

    Article  Google Scholar 

  34. E. Gordeliy, and A. Peirce, Comp. Methods Appl. Mech. Eng. 253, 305 (2013).

    Article  ADS  Google Scholar 

  35. H. Ziegler, Some Extremum Principles in Irreversible Thermodynamics, with Application to Continuum Mechanics (Swiss Federal Institute of Technology, Zürich, 1962), p. 50.

    Google Scholar 

  36. M. A. Biot, and D. C. Drucker, J. Appl. Mech. 32, 957 (1965).

    Article  ADS  Google Scholar 

  37. P. M. Adler, J. F. Thovert, and V. V. Mourzenko, Fractured Porous Media (Oxford University Press, Oxford, 2012), p. 50.

    Book  MATH  Google Scholar 

  38. J. Adachi, E. Siebrits, A. Peirce, and J. Desroches, Int. J. Rock Mech. Min. Sci. 44, 739 (2007).

    Article  Google Scholar 

  39. P. Gupta, and C. A. Duarte, Int. J. Numer. Anal. Meth. Geomech. 40, 1402 (2016).

    Article  Google Scholar 

  40. J. Réthoré, R. de Borst, and M. A. Abellan, Comput. Mech. 42, 227 (2008).

    Article  Google Scholar 

  41. A. R. Khoei, M. Vahab, and M. Hirmand, Int. J. Fract. 197, 1 (2016).

    Article  Google Scholar 

  42. A. R. Khoei, M. Hirmand, M. Vahab, and M. Bazargan, Int. J. Numer. Meth. Eng. 104, 439 (2015).

    Article  Google Scholar 

  43. M. Faivre, R. Giot, F. Golfier, and P. Massin, Rock Mech. Rock Eng. 1, 1409 (2014).

    Google Scholar 

  44. Q. W. Ren, Y. W. Dong, and T. T. Yu, Sci. China Ser. E-Technol. Sci. 52, 559 (2009).

    Article  Google Scholar 

  45. D. D. Xu, Z. L. Liu, Z. Zhuang, Q. L. Zeng, and T. Wang, Sci. China-Phys. Mech. Astron. 60, 024611 (2017).

  46. J. Bear, Dynamics of Fluids in Porous Media (Courier Corporation, New York, 1972), p. 58.

    MATH  Google Scholar 

  47. M. K. Hubbert, The Theory of Groundwater Motion (Columbia University Press, Chicago, 1940), p. 785.

    Google Scholar 

  48. J. H. Song, P. M. A. Areias, and T. Belytschko, Int. J. Numer. Meth. Eng. 67, 868 (2006).

    Article  Google Scholar 

  49. A. Hansbo, and P. Hansbo, Comp. Methods Appl. Mech. Eng. 193, 3523 (2004).

    Article  ADS  Google Scholar 

  50. O. C. Zienkiewicz, Appl. Math. Mech. 3, 457 (1982).

    Article  Google Scholar 

  51. T. Belytschko, W. K. Liu, B. Moran, and K. Elkhodary, Nonlinear Finite Elements for Continua and Structures (John Wiley & Sons, New Jersey, 2013), p. 649.

    MATH  Google Scholar 

  52. T. Belytschko, H. Chen, J. Xu, and G. Zi, Int. J. Numer. Meth. Eng. 58, 1873 (2003).

    Article  Google Scholar 

  53. S. Natarajan, D. R. Mahapatra, and S. P. A. Bordas, Int. J. Numer. Meth. Eng. 31, 269 (2010).

    Google Scholar 

  54. D. Wan, D. Hu, S. Natarajan, S. P. A. Bordas, and G. Yang, Int. J. Numer. Meth. Engng 110, 203 (2017).

    Article  Google Scholar 

  55. S. P. A. Bordas, T. Rabczuk, N. X. Hung, V. P. Nguyen, S. Natarajan, T. Bog, D. M. Quan, and N. V. Hiep, Comp. Struct. 88, 1419 (2010).

    Article  Google Scholar 

  56. D. P. Flanagan, and T. Belytschko, Int. J. Numer. Meth. Eng. 17, 679 (1981).

    Article  Google Scholar 

  57. W. J. T. Daniel, and T. Belytschko, Int. J. Numer. Meth. Eng. 64, 335 (2005).

    Article  Google Scholar 

  58. J. Chang, J. Xu, and Y. Mutoh, Eng. Fract. Mech. 73, 1249 (2006).

    Article  Google Scholar 

  59. F. Erdogan, and G. C. Sih, J. Basic Eng. 85, 519 (1963).

    Article  Google Scholar 

  60. J. L. Beuth Jr., and C. T. Herakovich, Theor. Appl. Fract. Mech. 11, 27 (1989).

    Article  Google Scholar 

  61. C. Carloni, and L. Nobile, Fat. Frac. Eng. Mat. Struct. 28, 825 (2005).

    Article  Google Scholar 

  62. E. Detournay, Int. J. Geomech. 4, 35 (2004).

    Article  Google Scholar 

  63. J. Hu, and D. I. Garagash, J. Eng. Mech. 136, 1152 (2010).

    Article  Google Scholar 

  64. A. R. Khoei, O. R. Barani, and M. Mofid, Int. J. Numer. Anal. Meth. Geomech. 35, 1160 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhanLi Liu or Zhuo Zhuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Liu, Z., Zeng, Q. et al. XFEM modeling of hydraulic fracture in porous rocks with natural fractures. Sci. China Phys. Mech. Astron. 60, 084612 (2017). https://doi.org/10.1007/s11433-017-9037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9037-3

Keywords

Navigation