Skip to main content
Log in

Modeling stationary and moving cracks in shells by X-FEM with CB shell elements

  • Article
  • Special Topic: Computational Mechanics
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The continuum-based (CB) shell theory is combined with the extended finite element method (X-FEM) in this paper to model crack propagation in shells under static and dynamic situations. Both jump function and asymptotic crack tip solution are adopted for describing the discontinuity and singularity of the crack in shells. Level set method (LSM) is used to represent the crack surface and define the enriched shape functions. Stress intensity factors (SIFs) are calculated by the displacement interpolation technique to prove the capability of the method and the maximum strain is applied for the fracture criterion. Also, an efficient integration scheme for the CB shell element with cracks is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhuang Z, Guo Y. Analysis of dynamic fracture mechanisms in gas pipelines. Eng Fract Mech, 1999, 64: 271–289

    Article  Google Scholar 

  2. Cirak F, Ortiz M, Pandolfi A. A cohesive approach to thin-shell fracture and fragmentation. Comput Meth Appl Mech Eng, 2005, 194: 2604–2618

    Article  MATH  Google Scholar 

  3. Cornec A, Schönfeld W, Schwalbe K H, et al. Application of the cohesive model for predicting the residual strength of a large scale fuselage structure with a two-bay crack. Eng Fail Anal, 2009, 16: 2541–2558

    Article  Google Scholar 

  4. Scheider I, Brocks W. Residual strength prediction of a complex structure using crack extension analyses. Eng Fract Mech, 2009, 76: 149–163

    Article  Google Scholar 

  5. Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer Methods Eng, 1999, 46: 131–150

    Article  MATH  Google Scholar 

  6. Sukumar N, Moës N, Moran B, et al. Extended finite element method for three-dimensional crack modelling. Int J Numer Methods Eng, 2000, 48: 1549–1570

    Article  MATH  Google Scholar 

  7. Dolbow J, Moës N, Belytschko T. Modeling fracture in Mindlin-Reissner plates with the extended finite element method. Int J Solids Struct, 2000, 37: 7161–7183

    Article  MATH  Google Scholar 

  8. Areias PMA, Belytschko T. Non-linear analysis of shells with arbitrary evolving cracks using XFEM. Int J Numer Methods Eng, 2005, 62: 384–415

    Article  MATH  Google Scholar 

  9. Areias P M A, Song J H, Belytschko T. Analysis of fracture in thin shells by overlapping paired elements. Comput Meth Appl Mech Eng, 2006, 195: 5343–5360

    Article  MATH  Google Scholar 

  10. Song J H, Belytschko T. Dynamic fracture of shells subjected to impulsive loads. J Appl Mech, 2009, 76: 051301

    Article  Google Scholar 

  11. Zhuang Z, Cheng B B. A novel enriched CB shell element method for simulating arbitrary crack growth in pipes. Sci China Phys Mech Astron, 2011, 54: 1520–1531

    Article  Google Scholar 

  12. Ahmad S, Irons B M, Zienkiewicz O. Analysis of thick and thin shell structures by curved finite elements. Int J Numer Meth Eng, 1970, 2: 419–451

    Article  Google Scholar 

  13. Hughes T J, Liu W K. Nonlinear finite element analysis of shells: Part I. Three-dimensional shells. Comput Meth Appl Mech Eng, 1981, 26: 331–362

    Article  MATH  MathSciNet  Google Scholar 

  14. Buechter N, Ramm E. Shell theory versus degeneration-a comparison in large rotation finite element analysis. Int J Numer Methods Eng, 1992, 34: 39–59

    Article  MATH  Google Scholar 

  15. Simo J C, Fox D D. On a stress resultant geometrically exact shell-model, Part I: Formulation and optimal parametrization. Comput Meth Appl Mech Eng, 1989, 72: 267–304

    Article  MATH  MathSciNet  Google Scholar 

  16. Parisch H. A continuum-based shell theory for non-linear applications. Int J Numer Methods Eng, 1995, 38: 1855–1883

    Article  MATH  Google Scholar 

  17. Belytschko T, Liu W K, Moran B. Nonlinear Finite Element for Continua and Structures. New York: John Wiley & Sons, Ltd., 2000

    Google Scholar 

  18. Stolarska M, Chopp D L, Moës N, et al. Modelling crack growth by level sets in the extended finite element method. Int J Numer Meth Eng, 2001, 51: 943–960

    Article  MATH  Google Scholar 

  19. Gravouil A, Moës N, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets-Part II: Level set update. Int J Numer Methods Eng, 2002, 53: 2569–2586

    Article  Google Scholar 

  20. Zehnder A T, Viz M J. Fracture mechanics of thin plates and shells under combined membrane, bending, and twisting loads. Appl Mech Rev, 2005, 58: 37–48

    Article  Google Scholar 

  21. Sosa H A, Eischen J W. Computation of stress intensity factors for plate bending via a path-independent integral. Eng Fract Mech, 1986, 25: 451–462

    Article  Google Scholar 

  22. Parisch H. An investigation of a finite rotation 4 node assumed strain shell element. Int J Numer Methods Eng, 1991, 31: 127–150

    Article  MATH  Google Scholar 

  23. Kalthoff J, Winkler S. Failure mode transition at high rates of shear loading. In: Chiem C Y, Kunze H D, Meyer L W, eds. Impact Loading and Dynamic Behavior of Materials. Oberursel: DGM-Verlag, 1987, 1: 185–195

    Google Scholar 

  24. Duan Q L, Song J H, Menouillard T, et al. Element-local level set method for three-dimensional dynamic crack growth. Int J Numer Methods Eng, 2009, 80: 1520–1543

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Zhuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Liu, Z., Xu, D. et al. Modeling stationary and moving cracks in shells by X-FEM with CB shell elements. Sci. China Technol. Sci. 57, 1276–1284 (2014). https://doi.org/10.1007/s11431-014-5589-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5589-y

Keywords

Navigation