Skip to main content
Log in

Recent progress in the fabrication of SERS substrates based on the arrays of polystyrene nanospheres

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Micro/nanostructures have broad applications in diverse application fields, such as surface enhanced Raman spectroscopy (SERS), photocatalysis, field emission, photonic crystals, microfluidic devices, electrochemical devices, etc. Using polystyrene (PS) spheres formed monolayer colloidal crystal templates as masks, scaffolds, or molds with different materials growth techniques, many different periodic nanostructured arrays can be obtained with the building units varied from nanoparticles, nanopores, nanorings, nanorods, to nanoshells. Significant progresses have been made on the synthesis of micro/nanostructures with efficient SERS response. In this review, we mainly focus on the various PS template-based fabrication techniques in realizing micro/nanostructured arrays and the SERS applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yang, X. Dai, B. Boschitsch Stogin, and T. S. Wong, Proc. Natl. Acad. Sci. USA 113, 268 (2016).

    Article  ADS  Google Scholar 

  2. L. Cui, Y. J. Zhang, W. E. Huang, B. F. Zhang, F. L. Martin, J. Y. Li, K. S. Zhang, and Y. G. Zhu, Anal. Chem. 88, 3164 (2016).

    Article  Google Scholar 

  3. C. Zhu, G. Meng, Q. Huang, X. Wang, Y. Qian, X. Hu, H. Tang, and N. Wu, Nano Res. 8, 957 (2015).

    Article  Google Scholar 

  4. J. Zhao, B. Frank, S. Burger, and H. Giessen, ACS Nano 5, 9009 (2011).

    Article  Google Scholar 

  5. H. Xu, J. Aizpurua, M. Käll, and P. Apell, Phys. Rev. E 62, 4318 (2000).

    Article  ADS  Google Scholar 

  6. K. A. Willets, and R. P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).

    Article  ADS  Google Scholar 

  7. M. Bankowska, J. Krajczewski, I. Dziecielewski, A. Kudelski, and J. L. Weyher, J. Phys. Chem. C 120, 1841 (2016).

    Article  Google Scholar 

  8. L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, and M. Sun, J. Raman Spectrosc. 45, 533 (2014).

    Article  ADS  Google Scholar 

  9. L. Zhao, L. Jensen, and G. C. Schatz, J. Am. Chem. Soc. 128, 2911 (2006).

    Article  Google Scholar 

  10. C. Y. Chen, and E. Burstein, Phys. Rev. Lett. 45, 1287 (1980).

    Article  ADS  Google Scholar 

  11. M. Jahn, S. Patze, I. J. Hidi, R. Knipper, A. I. Radu, A. Mühlig, S. Yüksel, V. Peksa, K. Weber, T. Mayerhöfer, D. Cialla-May, and J. Popp, Analyst 141, 756 (2016).

    Article  ADS  Google Scholar 

  12. S. Fateixa, H. I. S. Nogueira, and T. Trindade, Phys. Chem. Chem. Phys. 17, 21046 (2015).

    Article  Google Scholar 

  13. S. L. Kleinman, R. R. Frontiera, A. I. Henry, J. A. Dieringer, and R. P. Van Duyne, Phys. Chem. Chem. Phys. 15, 21 (2013).

    Article  Google Scholar 

  14. M. Kang, X. Zhang, L. Liu, Q. Zhou, M. Jin, G. Zhou, X. Gao, X. Lu, Z. Zhang, and J. Liu, Nanotechnology 27, 165304 (2016).

    Article  ADS  Google Scholar 

  15. S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, and Z. Q. Tian, Nat. Rev. Mater. 1, 16021 (2016).

    Article  ADS  Google Scholar 

  16. A. Wang, and X. Kong, Materials 8, 3024 (2015).

    Article  ADS  Google Scholar 

  17. J. J. Kim, Y. Li, E. J. Lee, and S. O. Cho, Langmuir 27, 2334 (2011).

    Article  Google Scholar 

  18. Y. Chen, H. Cheng, K. Tram, S. Zhang, Y. Zhao, L. Han, Z. Chen, and S. Huan, Analyst 138, 2624 (2013).

    Article  ADS  Google Scholar 

  19. Y. K. Hong, H. Kim, G. Lee, W. Kim, J. I. Park, J. Cheon, and J. Y. Koo, Appl. Phys. Lett. 80, 844 (2002).

    Article  ADS  Google Scholar 

  20. P. Jiang, and M. J. McFarland, J. Am. Chem. Soc. 126, 13778 (2004).

    Article  Google Scholar 

  21. J. Ge, Y. D. Ye, H. B. Yao, X. Zhu, X. Wang, L. Wu, J. L. Wang, H. Ding, N. Yong, L. H. He, and S. H. Yu, Angew. Chem. Int. Ed. 53, 3612 (2014).

    Article  Google Scholar 

  22. C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, Appl. Phys. Lett. 93, 133109 (2008).

    Article  ADS  Google Scholar 

  23. P. Pandit, M. Banerjee, and A. Gupta, Colloids Surfaces A-Physicochem. Eng. Aspects 454, 189 (2014).

    Article  Google Scholar 

  24. Y. Hwang, H. Sohn, A. Phan, O. M. Yaghi, and R. N. Candler, Nano Lett. 13, 5271 (2013).

    Article  ADS  Google Scholar 

  25. H. Xu, N. Lu, D. Qi, J. Hao, L. Gao, B. Zhang, and L. Chi, Small 4, 1972 (2008).

    Article  Google Scholar 

  26. H. Xu, N. Lu, D. Qi, L. Gao, J. Hao, Y. Wang, and L. Chi, Microelectronic Eng. 86, 850 (2009).

    Article  Google Scholar 

  27. Q. Shao, J. Tang, Y. Lin, F. Zhang, J. Yuan, H. Zhang, N. Shinya, and L. C. Qin, J. Mater. Chem. A 1, 15423 (2013).

    Article  Google Scholar 

  28. S. Yang, M. I. Lapsley, B. Cao, C. Zhao, Y. Zhao, Q. Hao, B. Kiraly, J. Scott, W. Li, L. Wang, Y. Lei, and T. J. Huang, Adv. Funct. Mater. 23, 720 (2013).

    Article  Google Scholar 

  29. M. C. Gwinner, E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, Small 5, 400 (2009).

    Article  Google Scholar 

  30. M. Erdmanis, P. Sievilä, A. Shah, N. Chekurov, V. Ovchinnikov, and I. Tittonen, Nanotechnology 25, 335302 (2014).

    Article  Google Scholar 

  31. A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, Nano Lett. 9, 3922 (2009).

    Article  ADS  Google Scholar 

  32. M. Cottat, N. Lidgi-Guigui, I. Tijunelyte, G. Barbillon, F. Hamouda, P. Gogol, A. Aassime, J. M. Lourtioz, B. Bartenlian, and M. L. de la Chapelle, Nanoscale Res. Lett. 9, 623 (2014).

    Article  ADS  Google Scholar 

  33. C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001).

    Article  Google Scholar 

  34. S. M. Yang, S. G. Jang, D. G. Choi, S. Kim, and H. K. Yu, Small 2, 458 (2006).

    Article  Google Scholar 

  35. C. Haginoya, M. Ishibashi, and K. Koike, Appl. Phys. Lett. 71, 2934 (1997).

    Article  ADS  Google Scholar 

  36. Z. Cai, Y. J. Liu, X. Lu, and J. Teng, ACS Appl. Mater. Interfaces 6, 10265 (2014).

    Article  Google Scholar 

  37. X. Zhang, B. Wang, X. Wang, X. Xiao, Z. Dai, W. Wu, J. Zheng, F. Ren, C. Jiang, and R. J. Xie, J. Am. Ceram. Soc. 98, 2255 (2015).

    Article  Google Scholar 

  38. J. Zheng, Z. Dai, F. Mei, X. Xiao, L. Liao, W. Wu, X. Zhao, J. Ying, F. Ren, and C. Jiang, J. Phys. Chem. C 118, 20521 (2014).

    Article  Google Scholar 

  39. Z. Dai, X. Xiao, W. Wu, Y. Zhang, L. Liao, S. Guo, J. Ying, C. Shan, M. Sun, and C. Jiang, Light Sci. Appl. 4, e342 (2015).

    Article  Google Scholar 

  40. S. Mahajan, M. Abdelsalam, Y. Suguwara, S. Cintra, A. Russell, J. Baumberg, and P. Bartlett, Phys. Chem. Chem. Phys. 9, 104 (2007).

    Article  Google Scholar 

  41. Y. Lei, S. Yang, M. Wu, and G. Wilde, Chem. Soc. Rev. 40, 1247 (2011).

    Article  Google Scholar 

  42. Z. G. Dai, X. H. Xiao, Y. P. Zhang, F. Ren, W. Wu, S. F. Zhang, J. Zhou, F. Mei, and C. Z. Jiang, Nanotechnology 23, 335701 (2012).

    Article  ADS  Google Scholar 

  43. S. Schlücker, Angew. Chem. Int. Ed. 53, 4756 (2014).

    Article  Google Scholar 

  44. N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, Nano Lett. 10, 4952 (2010).

    Article  ADS  Google Scholar 

  45. Z. Dai, X. Xiao, L. Liao, J. Zheng, F. Mei, W. Wu, J. Ying, F. Ren, and C. Jiang, Appl. Phys. Lett. 103, 041903 (2013).

    Article  ADS  Google Scholar 

  46. C. L. Haynes, and R. P. Van Duyne, Nano Lett. 3, 939 (2003).

    Article  ADS  Google Scholar 

  47. G. Zhang, and D. Wang, J. Am. Chem. Soc. 130, 5616 (2008).

    Article  Google Scholar 

  48. J. Liu, Y. Chen, H. Cai, X. Chen, C. Li, and C. F. Yang, Materials 8, 2688 (2015).

    Article  ADS  Google Scholar 

  49. Z. Dai, F. Mei, X. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. Guo, X. Zhao, W. Li, F. Ren, and C. Jiang, Appl. Phys. Lett. 105, 033515 (2014).

    Article  ADS  Google Scholar 

  50. Z. G. Dai, X. H. Xiao, L. Liao, J. J. Ying, F. Mei, W. Wu, F. Ren, W. Q. Li, and C. Z. Jiang, Appl. Phys. Lett. 102, 163108 (2013).

    Article  ADS  Google Scholar 

  51. C. Wang, W. Ruan, N. Ji, W. Ji, S. Lv, C. Zhao, and B. Zhao, J. Phys. Chem. C 114, 2886 (2010).

    Article  Google Scholar 

  52. K. Ma, J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, Anal. Chem. 83, 9146 (2011).

    Article  Google Scholar 

  53. C. Farcau, and S. Astilean, J. Phys. Chem. C 114, 11717 (2010).

    Article  Google Scholar 

  54. X. Zhang, J. Zhao, A. V. Whitney, J. W. Elam, and R. P. Van Duyne, J. Am. Chem. Soc. 128, 10304 (2006).

    Article  Google Scholar 

  55. H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, Adv. Mater. 25, 2678 (2013).

    Article  Google Scholar 

  56. J. Lee, Q. Zhang, S. Park, A. Choe, Z. Fan, and H. Ko, ACS Appl. Mater. Interfaces 8, 634 (2016).

    Article  Google Scholar 

  57. X. Li, Y. Zhang, Z. X. Shen, and H. J. Fan, Small 8, 2548 (2012).

    Article  ADS  Google Scholar 

  58. K. W. Tan, G. Li, Y. K. Koh, Q. Yan, and C. C. Wong, Langmuir 24, 9273 (2008).

    Article  Google Scholar 

  59. Z. Dai, Y. Li, G. Duan, L. Jia, and W. Cai, ACS Nano 6, 6706 (2012).

    Article  Google Scholar 

  60. Z. Dai, F. Mei, X. Xiao, L. Liao, W. Wu, Y. Zhang, J. Ying, L. Wang, F. Ren, and C. Jiang, Nanotechnology 26, 125603 (2015).

    Article  ADS  Google Scholar 

  61. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009), arXiv: 0905.1712.

    Article  ADS  Google Scholar 

  62. B. Kiraly, S. Yang, and T. J. Huang, Nanotechnology 24, 245704 (2013).

    Article  ADS  Google Scholar 

  63. J. W. Ho, Q. Wee, J. Dumond, A. Tay, and S. J. Chua, Nanoscale Res Lett 8, 506 (2013).

    Article  ADS  Google Scholar 

  64. S. V. Kesapragada, and D. Gall, Thin Solid Films 494, 234 (2006).

    Article  ADS  Google Scholar 

  65. Y. Li, T. Sasaki, Y. Shimizu, and N. Koshizaki, J. Am. Chem. Soc. 130, 14755 (2008).

    Article  Google Scholar 

  66. D. Qi, L. Lu, L. Wang, and J. Zhang, J. Am. Chem. Soc. 136, 9886 (2014).

    Article  Google Scholar 

  67. A. Stein, B. E. Wilson, and S. G. Rudisill, Chem. Soc. Rev. 42, 2763 (2013).

    Article  Google Scholar 

  68. J. Zhao, J. Lin, X. Li, G. Zhao, and W. Zhang, Appl. Surface Sci. 347, 514 (2015).

    Article  ADS  Google Scholar 

  69. W. Li, X. Liu, Y. Wang, Z. Dai, W. Wu, L. Cheng, Y. Zhang, Q. Liu, X. Xiao, and C. Jiang, Appl. Phys. Lett. 108, 153501 (2016).

    Article  ADS  Google Scholar 

  70. X. Xiao, C. Jiang, F. Ren, J. Wang, and Y. Shi, Solid State Commun. 137, 362 (2006).

    Article  ADS  Google Scholar 

  71. G. Wang, X. Xiao, W. Li, Z. Lin, Z. Zhao, C. Chen, C. Wang, Y. Li, X. Huang, L. Miao, C. Jiang, Y. Huang, and X. Duan, Nano Lett. 15, 4692 (2015).

    Article  ADS  Google Scholar 

  72. S. Yang, W. Cai, J. Yang, and H. Zeng, Langmuir 25, 8287 (2009).

    Article  Google Scholar 

  73. S. Yang, W. Cai, L. Kong, and Y. Lei, Adv. Funct. Mater. 20, 2527 (2010).

    Article  Google Scholar 

  74. J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G. Y. Wang, Z. Wang, and L. Philippe, Adv. Mater. 22, 1607 (2010).

    Article  Google Scholar 

  75. X. Song, Z. Dai, X. Xiao, W. Li, X. Zheng, X. Shang, X. Zhang, G. Cai, W. Wu, F. Meng, and C. Jiang, Sci. Rep. 5, 17529 (2015).

    Article  ADS  Google Scholar 

  76. D. N. Wijesundera, I. Rajapaksa, X. Wang, J. R. Liu, I. Rusakova, and W. K. Chu, J. Raman Spectrosc. 44, 1014 (2013).

    Article  ADS  Google Scholar 

  77. W. Li, X. Xiao, Z. Dai, W. Wu, L. Cheng, F. Mei, X. Zhang, and C. Jiang, J. Phys.-Condens. Matter 28, 254003 (2016).

    Article  ADS  Google Scholar 

  78. S. Yang, P. J. Hricko, P. H. Huang, S. Li, Y. Zhao, Y. Xie, F. Guo, L. Wang, and T. J. Huang, J. Mater. Chem. C 2, 542 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ShiKuan Yang or XiangHeng Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Dai, Z., Zhang, X. et al. Recent progress in the fabrication of SERS substrates based on the arrays of polystyrene nanospheres. Sci. China Phys. Mech. Astron. 59, 126801 (2016). https://doi.org/10.1007/s11433-016-0341-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-0341-y

Keywords

Navigation