Skip to main content
Log in

Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Development of cost-effective, highly reproducible non-conventional fabrication techniques for anisotropic metal nanostructures is essential to realizing potential applications of plasmonic devices, photonic devices, and surface enhanced Raman scattering (SERS) phenomenon based sensors. This report highlights the fabrication of nanotriangle arrays via nanoimprinting to overcome difficulties in creating large-area SERS active substrates with uniform, reproducible Raman signals. Electron beam lithography of anisotropic nanostructures, formation of arrays of nanotriangles in silicon and the transfer of triangular shapes to polymethylmethacrylate (PMMA) sheets via nanoimprinting have not been reported elsewhere. The reuse of silicon masters offers potential for production of low cost SERS substrates. The SERS activity and reproducibility of nanotriangles are illustrated and a consistent average enhancement factor of up to ~2.9 × 1011, which is the highest value reported for a patterned SERS substrate, is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.

    Article  Google Scholar 

  2. Culha, M.; Stokes, D.; Allain, L. R.; Vo-Dinh, T. Surfaceenhanced Raman scattering substrate based on a selfassembled monolayer for use in gene diagnostics. Anal. Chem. 2003, 75, 6196–6201.

    Article  Google Scholar 

  3. Kneipp, K.; Moskovits, M.; Kneipp, H. Surface-Enhanced Raman Scattering: Physics and Applications; Springer-Verlag: Berlin Heidelberg, 2006.

    Book  Google Scholar 

  4. Vo-Dinh, T.; Stokes, D. L.; Griffin, G. D.; Volkan, M.; Kim, U. J.; Simon, M. I. Surface-enhanced Raman scattering (SERS) method and instrumentation for genomics and biomedical analysis. J. Raman Spectrosc. 1999, 30, 785–793.

    Article  Google Scholar 

  5. Yan, F.; Wabuyele, M. B.; Griffin, G. D.; Vass A. A.; Vo-Dinh, T. Surface-enhanced Raman scattering detection of chemical and biological agent simulants. IEEE Sens. J. 2005, 5, 665–670.

    Article  Google Scholar 

  6. Guicheteau, J.; Argue, L.; Emge, D.; Hyre, A.; Jacobson, M.; Christesrn, S. Bacillus spore classification via surfaceenhanced Raman spectroscopy and principal component analysis. Appl. Spectrosc. 2008, 62, 267–272.

    Article  Google Scholar 

  7. Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626.

    Article  Google Scholar 

  8. Garcia, M. A. Surface plasmons in metallic nanoparticles: Fundamentals and applications. J. Phys. D: Appl. Phys. 2011, 44, 283001.

    Article  Google Scholar 

  9. Camden, J. P.; Dieringer, J. A.; Wang, Y. M.; Masiello, D. J.; Marks, L. D.; Schatz, G. C.; Van Duyne, R. P. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 2008, 130, 12616–12617.

    Article  Google Scholar 

  10. Li, W. Y.; Camargo, P. H. C.; Lu, X. M.; Xia, Y. N. Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 2009, 9, 485–490.

    Article  Google Scholar 

  11. Le Ru, E. C.; Etchegoin, P. G.; Meyer, M. Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. J. Chem. Phys. 2006, 125, 204701.

    Article  Google Scholar 

  12. Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman spectroelectrochemistry: Part 1. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 1977, 84, 1–20.

    Article  Google Scholar 

  13. Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217.

    Article  Google Scholar 

  14. Hildebrandt, P.; Stockburger, M. Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 1984, 88, 5935–5944.

    Article  Google Scholar 

  15. Kleinman, S. L.; Ringe, E.; Valley, N.; Wustholz, K. L.; Phillips, E.; Scheidt, K. A.; Schatz, G. C.; Van Duyne, R. P. Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: Theory and experiment. J. Am. Chem. Soc., 2011, 133, 4115–4122.

    Article  Google Scholar 

  16. Lemma, T.; Aroca, R. F. Single molecule surface-enhanced resonance Raman scattering on colloidal silver and Langmuir–Blodgett monolayers coated with silver overlayers. J. Raman Spectrosc. 2002, 33, 197–201.

    Article  Google Scholar 

  17. Hulteen, J. C.; Treichel, D. A.; Smith, M. T.; Duval, M. L.; Jensen, T. R.; Van Duyne, R. P. Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays. J. Phys. Chem. B 1999, 103, 3854–3863.

    Article  Google Scholar 

  18. Gunnarsson, L.; Bjerneld, E. J.; Xu, H.; Petronis, S.; Kasemo, B.; Käll, M. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl. Phys. Lett. 2001, 78, 802–804.

    Article  Google Scholar 

  19. Yu, Q. M.; Braswell1, S.; Christin, B.; Xu, J. J.; Wallace, P. M.; Gong, H.; Kaminsky, D. Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays. Nanotechnology 2010, 21, 355301.

    Article  Google Scholar 

  20. Yue, W. S.; Wang, Z. H.; Yang, Y.; Chen, L. Q.; Syed, A.; Wong, K.; Wang, X. B. Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering. J. Micromech. Microeng. 2012, 22, 125007.

    Article  Google Scholar 

  21. Wu, W.; Hu, M.; Ou, F. S.; Li, Z. Y.; Williams, R. S. Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy. Nanotechnology 2010, 21, 255502.

    Article  Google Scholar 

  22. Barcelo, S. J.; Kim, A.; Wu, W.; Li, Z. Y. Fabrication of deterministic nanostructure assemblies with sub-nanometer spacing using a nanoimprinting transfer technique. ACS Nano 2012, 6, 6446–6452.

    Article  Google Scholar 

  23. Caldwell, J. D.; Glembocki, O.; Bezares, F. J.; Bassim, N. D.; Rendell, R. W.; Feygelson, M.; Ukaegbu, M.; Kasica, R.; Shirey, L.; Hosten, C. Plasmonic nanopillar arrays for largearea, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 2011, 5, 4046–4055.

    Article  Google Scholar 

  24. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670.

    Article  Google Scholar 

  25. Lee, J. H.; Nam, J. M.; Jeon, K. S.; Lim, D. K.; Kim, H.; Kwon, S.; Lee, H.; Suh, Y. D. Tuning and maximizing the single-molecule surface-enhanced Raman scattering from DNA-tethered nanodumbbells. ACS Nano 2012, 6, 9574–9584.

    Article  Google Scholar 

  26. Fan, M. K.; Andrade, G. F. S.; Brolo, A. G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 2011, 693, 7–25.

    Article  Google Scholar 

  27. Taylor, C. E.; Pemberton, J. E.; Goodman, G. G.; Schoenfisch, M. H. Surface enhancement factors for Ag and Au surfaces relative to Pt surfaces for monolayers of thiophenol. Appl. Spectrosc. 1999, 53, 1212–1221.

    Article  Google Scholar 

  28. Gartia, M. R.; Xu, Z. D.; Behymer, E.; Nguyen, H.; Britten, J. A.; Larson, C.; Miles, R.; Bora, M.; Chang, A. S. P.; Bond, T. C. et al. Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays. Nanotechnology 2010, 21, 395701–10.

    Article  Google Scholar 

  29. Michaels, A. M.; Nirmal, M.; Brus, L. E. Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 1999, 121, 9932–9939.

    Article  Google Scholar 

  30. Radziuk, D.; MÖhwald, H. Surpassingly competitive electromagnetic field enhancement at the silica/silver interface for selective intracellular surface enhanced Raman scattering detection. ACS Nano 2015, 9, 2820–2835.

    Article  Google Scholar 

  31. Xu, T. T.; Huang, J. A.; He, L. F.; He, Y.; Su, S.; Lee, S. T. Ordered silicon nanocones arrays for label-free DNA quantitative analysis by surface-enhanced Raman spectroscopy. Appl. Phy. Lett. 2011, 99, 153116.

    Article  Google Scholar 

  32. Bell, S. E. J.; Sirimuthu, N. M. S. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J. Am. Chem. Soc. 2006, 128, 15580–15581.

    Article  Google Scholar 

  33. Domke, K. F.; Zhang, D.; Pettinger, B. Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au(111). J. Am. Chem. Soc. 2007, 129, 6708–6709.

    Article  Google Scholar 

  34. Barhoumi, A.; Halas, N. J. Detecting chemically modified DNA bases using surface-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 2011, 2, 3118−3123.

    Article  Google Scholar 

  35. Yu, Q. M.; Guan, P.; Qin, D.; Golden, G.; Wallace, P. M. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett. 2008, 8, 1923–1928.

    Article  Google Scholar 

  36. Wang, Y. D.; Lu, N.; Wang, W. T.; Liu, L. X.; Feng, L.; Zeng, Z. F.; Li, H. B.; Xu, W. Q.; Wu, Z. J.; Hu, W. et al. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res. 2013, 6, 159–166.

    Article  Google Scholar 

  37. Etchegoin, P. G.; Le Ru, E. C. A perspective on single molecule SERS: Current status and future challenges. Phys. Chem. Chem. Phys. 2008, 10, 6079–6089.

    Article  Google Scholar 

  38. Le Ru, E. C.; Blakie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: A com prehensive study. J. Phys. Chem. C. 2007, 111, 13794–13803.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madambi Kunjukuttan Jayaraj.

Electronic supplementary material

12274_2016_1190_MOESM1_ESM.pdf

Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasna, K., Antony, A., Puigdollers, J. et al. Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates. Nano Res. 9, 3075–3083 (2016). https://doi.org/10.1007/s12274-016-1190-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1190-y

Keywords

Navigation