Skip to main content
Log in

Low-thrust trajectory optimization of asteroid sample return mission with multiple revolutions and moon gravity assists

  • Article
  • Dynamics and Control
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Near-Earth asteroids have gained a lot of interest and the development in low-thrust propulsion technology makes complex deep space exploration missions possible. A mission from low-Earth orbit using low-thrust electric propulsion system to rendezvous with near-Earth asteroid and bring sample back is investigated. By dividing the mission into five segments, the complex mission is solved separately. Then different methods are used to find optimal trajectories for every segment. Multiple revolutions around the Earth and multiple Moon gravity assists are used to decrease the fuel consumption to escape from the Earth. To avoid possible numerical difficulty of indirect methods, a direct method to parameterize the switching moment and direction of thrust vector is proposed. To maximize the mass of sample, optimal control theory and homotopic approach are applied to find the optimal trajectory. Direct methods of finding proper time to brake the spacecraft using Moon gravity assist are also proposed. Practical techniques including both direct and indirect methods are investigated to optimize trajectories for different segments and they can be easily extended to other missions and more precise dynamic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sánchez J P, McInnes C. Available Asteroid Resources in the Earths Neighbourhood. In: Asteroids V B, ed. Berlin, Heidelberg: Springer, 2013. 439458

  2. Yárnoz D G, Sanchez J P, McInnes C. Easily retrievable objects among the NEO population. Celest Mech Dyn Astron, 2013; 116: 367–388

    Article  ADS  Google Scholar 

  3. Strange N, Landau T M, Lantoine G, et al. Overview of mission design for NASA asteroid redirect robotic mission concept. In: Proceedings of 33rd International Electric Propulsion Conference. Washington D C: The George Washington University, 2013

    Google Scholar 

  4. Mingotti G, Sánchez J P, McInnes C. Combined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun-Earth circular restricted three-body problem. Celest Mech Dyn Astron, 2014; 120: 309–336

    Article  ADS  Google Scholar 

  5. Mingotti G, Sanchez J P, McInnes C. Low energy, lowthrust capture of near earth objects in the Sun-Earth and Earth-Moon restricted three-body systems. In: Proceedings of SPACE Conferences & Exposition. American Institute of Aeronautics and Astronautics. San Diego, 2014

    Google Scholar 

  6. Hou X Y, Liu L. Double lunar swing-by orbits revisited. Sci China-Phys Mech Astron, 2014; 57: 784–790

    Article  ADS  Google Scholar 

  7. Liu X D, Baoyin H X, Ma X R. Dynamics of surface motion on a rotating massive homogeneous body. Sci China-Phys Mech Astron, 2013; 56: 818–829

    Article  ADS  Google Scholar 

  8. Wang S, Shang H B, Wu W R. Interplanetary transfers employing invariant manifolds and gravity assist between periodic orbits. Sci China-Phys Mech Astron, 2013; 56: 786–794

    Google Scholar 

  9. Xu M, Tan T, Xu S J. Research on the transfers to Halo orbits from the view of invariant manifolds. Sci China-Phys Mech Astron, 2012; 55: 671–683

    Article  ADS  Google Scholar 

  10. Chen Y, Baoyin H X, Li J F. Trajectory design for the Moon departure libration point mission in full ephemeris model. Sci China Tech Sci, 2011; 54: 2924–2934

    Article  Google Scholar 

  11. Qi R, Xu S J, Chen T. Control of orientation for spacecraft formations in the vicinity of the Sun-Earth L2 libration point. Sci China-Phys Mech Astron, 2014; 57: 1778–1787

    Article  ADS  Google Scholar 

  12. Chen Y, Baoyin H X, Li J F. Design and optimization of a trajectory for Moon departure Near Earth Asteroid exploration. Sci China-Phys Mech Astron, 2011; 54: 748–755

    Article  ADS  Google Scholar 

  13. Rayman M D, Varghese P, Lehman D H, et al. Results from the deep space 1 technology validation mission. Acta Astron, 2000, 47: 475487

    Google Scholar 

  14. Racca G, Marini A, Stagnaro L, et al. SMART-1 mission description and development status. Planet Space Sci, 2002; 50: 1323–1337

    Article  ADS  Google Scholar 

  15. Kawaguchi J, Fujiwara A, Uesugi T K. The Ion Engines Cruise Operation And The Earth Swingby Of Hayabusa (Muses-C). In: Proceddings of the 55th International Astronotical Congress. Vancouver. 2004

    Google Scholar 

  16. Rayman M D, Fraschetti T C, Raymond C A, et al. Coupling of system resource margins through the use of electric propulsion: Implications in preparing for the Dawn mission to Ceres and Vesta. Acta Astron, 2007; 60: 930–938

    Article  Google Scholar 

  17. Hargraves C R, Paris S W. Direct trajectory optimization using nonlinear programming and collocation. J Guidance Control Dyn, 1987; 10: 338–342

    Article  ADS  MATH  Google Scholar 

  18. Enright P J, Conway B A. Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. J Guidance Control Dyn, 1992; 15: 994–1002

    Article  ADS  MATH  Google Scholar 

  19. Sims J, Finlayson P, Rinderle E, et al. Implementation of a low- thrust trajectory optimization algorithm for preliminary design. In: Proceed ings of AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Guidance, Navigation, and Control and Co-located Conferences. Colorado: American Institute of Aeronautics and Astronautics, 2006

    Google Scholar 

  20. Kechichian J A. Optimal low-earth-orbit-geostationary-earth-orbit intermediate acceleration orbit transfer. J Guidance Control Dyn, 1997; 20: 803–811

    Article  ADS  MATH  Google Scholar 

  21. Guo T D, Jiang F H, Baoyin H X, et al. Fuel optimal low thrust rendezvous with outer planets via gravity assist. Sci China-Phys Mech Astron, 2011; 54: 756–769

    Article  ADS  Google Scholar 

  22. Ranieri C L, Ocampo C A. Indirect optimization of three-dimensional finite-burning interplanetary transfers including spiral dynamics. J Guidance Control Dyn, 2009; 32: 445–455

    Article  ADS  Google Scholar 

  23. Gong S P, Li J F. Fuel consumption for interplanetary missions of solar sailing. Sci China-Phys Mech Astron, 2014; 57: 521–531

    Article  ADS  Google Scholar 

  24. Jiang F H, Baoyin H X, Li J F. Practical techniques for low-thrust trajectory optimization with homotopic approach. J Guidance Control Dyn, 2012; 35: 245–258

    Article  ADS  Google Scholar 

  25. Cai X S, Li J F, Gong S P. Solar sailing trajectory optimization with planetary gravity assist. Sci China-Phys Mech Astron, 2015; 58: 1–11

    Google Scholar 

  26. Bertrand R, Epenoy R. New smoothing techniques for solving bangbang optimal control problemsnumerical results and statistical interpretation. Opt Control Appl Meth, 2002; 23: 171–197

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang P, Li J F, Gong S P. Fuel-optimal trajectory design using solar electric propulsion under power constraints and performance degradation. Sci China-Phys Mech Astron, 2014; 57: 1090–1097

    Article  ADS  Google Scholar 

  28. Kluever C A, Pierson B L. Optimal low-thrust three-dimensional earthmoon trajectories. J Guidance Control Dyn, 1995; 18: 830–837

    Article  ADS  Google Scholar 

  29. Gao Y, Kluever C A. Low-thrust interplanetary orbit transfers using hybrid trajectory optimization method with multiple shooting. AIAA Paper, 2004, AIAA 2004-5088

    Google Scholar 

  30. Hull D G. Conversion of optimal control problems into parameter optimization problems. J Guidance Control Dyn, 1997; 20: 57–60

    Article  ADS  MATH  Google Scholar 

  31. Seywald H. Trajectory optimization based on differential inclusion (Revised). J Guidance Control Dyn, 1994; 17: 480–487

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Guo T, Jiang F, Li J. Homotopic approach and pseudospectral method applied jointly to low thrust trajectory optimization. Acta Astron, 2012; 71: 38–50

    Article  Google Scholar 

  33. Kim Y H, Spencer D B. Optimal spacecraft rendezvous using genetic algorithms. J Spacecraft Rockets, 2002; 39: 859–865

    Article  ADS  Google Scholar 

  34. Zhu K, Jiang F, Li J, et al. Trajectory optimization of multi-asteroids exploration with low thrust. Jpn Soc Aeron Space Sci Trans, 2009; 52: 47–54

    Article  ADS  Google Scholar 

  35. Casalino L, Colasurdo G, Pastrone D. Optimal low-thrust escape trajectories using gravity assist. J Guidance Control Dyn, 1999, 22: 637642

    Google Scholar 

  36. Mantia M L, Casalino L. Indirect optimization of low-thrust capture trajectories. J Guidance Control Dyn, 2006; 29: 1011–1014

    Article  ADS  Google Scholar 

  37. Nah R, Vadali S, Braden E. Fuel-optimal, low-thrust, threedimensional Earth-Mars trajectories. J Guidance Control Dyn, 2001, 24: 11001107

    Article  Google Scholar 

  38. Mengali G, Quarta A A. Trajectory design with hybrid low-thrust propulsion system. J Guidance Control Dyn, 2007; 30: 419–426

    Article  ADS  Google Scholar 

  39. Haberkorn T, Martinon P, Gergaud J. Low thrust minimum-fuel orbital transfer: A homotopic approach. J Guidance Control Dyn, 2004; 27: 1046–1060

    Article  ADS  Google Scholar 

  40. Thevenet J B, Epenoy R. Minimum-fuel deployment for spacecraft formations via optimal control. J Guidance Control Dyn, 2008, 31: 101113

    Article  Google Scholar 

  41. Kawaguchi J, Yamakawa H, Uesugi T, et al. On making use of lunar and solar gravity assists in LUNAR-A, PLANET-B missions. Acta Astron, 1995; 35: 633–642

    Article  Google Scholar 

  42. Uphoff C W. The art and science of lunar gravity assist. Adv Astron Sci, 1989; 69: 333–346

    Google Scholar 

  43. Macdonald M, McInnes C. Spacecraft planetary capture using gravityassist maneuvers. J Guidance Control Dyn, 2005; 28: 365–369

    Article  ADS  Google Scholar 

  44. Sims J A. Delta-V gravity-assist trajectory design: Theory and practice. Dissertation for Doctoral Degree. West Lafayette: School of Aeronautics and Astronautics, Purdue University, 1997

    Google Scholar 

  45. Pontryagin L S. Mathematical Theory of Optimal Processes. New York: Wiley-Interscience, 1962

    Google Scholar 

  46. Gergaud J, Haberkorn T. Orbital transfer: Some links between the lowthrust and the impulse cases. Acta Astron, 2007; 60: 649–657

    Article  Google Scholar 

  47. Gill P E, Murray W, Saunders M A. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J Opt, 2002; 12: 979–1006

    Article  MathSciNet  MATH  Google Scholar 

  48. Burden R L, Faires J D. Numerical Analysis. 3rd ed. Boston/Mass: Prindle, Weber & Schmidt, 1985

    Google Scholar 

  49. More J J, Garbow B S, Hillstrom K E. User guide for MINPACK-1. Report. Argonne National Lab. ANL-80-74, 1980

    Book  Google Scholar 

  50. Powell M J. A hybrid method for nonlinear equations. Numer Methr Nonlinear Algeb Equat, 1970; 7: 87–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FanHuag Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, G., Jiang, F. & Li, J. Low-thrust trajectory optimization of asteroid sample return mission with multiple revolutions and moon gravity assists. Sci. China Phys. Mech. Astron. 58, 114501 (2015). https://doi.org/10.1007/s11433-015-5699-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5699-y

Keywords

Navigation