Skip to main content
Log in

Competition of the multiple Görtler modes in hypersonic boundary layer flows

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Competition of multiple Görtler modes in hypersonic boundary layer flows are investigated with the local and marching methods. The wall-layer mode (mode W) and the trapped-layer mode (mode T) both occur in the compressible boundary layer where there exists a temperature adjustment layer near the upper edge. The mode T has the largest growth rate at a lower Görtler number while the mode W dominates at larger Görtler numbers. These two modes are both responsible for the flow transition in the hypersonic flows especially when Görtler number is in the high value range in which the crossover of these two modes takes place. Such high Görtler numbers are virtually far beyond the neutral regime. The nonparallel base flows, therefore, cease to influence the stability behavior of the Görtler modes. The effects of the Mach number on the multiple Görtler modes are studied within a chosen Mach number of 0.95, 2, 4 and 6. When the flow Mach number is sufficiently large, e.g., Ma ⩾4, the growth rate crossover of the mode T and mode W occurs both in the conventional G-β map as well as on the route downstream for a fixed wavelength disturbance. Four particular regions (Region T, T-W, W-T and W) around the crossover point are highlighted with the marching analysis and the result matches that of the local analysis. The initial disturbance of a normal mode maintains the shape in its corresponding dominating region while a shape-transformation occurs outside this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Görtler H. On the three-dimensional instability of laminar boundary layers on concave walls. NACA TM 1375, 1954; translated from “Über eine dreidimensionale Instabilität laminarer Grenzschichten an konkaven Wänden. Des. D. Wiss. Göttingen, Nachr 1940, 1940, 1 (2).

    Google Scholar 

  2. Herbert T. On the stability of the boundary layer along a concave wall. Archiwum Mechaniki Stosowanej, 1976, 28: 1039–1055

    ADS  MATH  Google Scholar 

  3. Hall P. Görtler vortices in growing boundary-layers: The leading-edge receptivity problem, linear growth and the nonlinear breakdown stage. Mathematika, 1990, 37(2): 151–189

    Article  MATH  MathSciNet  Google Scholar 

  4. Floryan JM. On the Görtler instability of boundary layers. Prog Aerosp Sci, 1991, 28(3): 235–271

    Article  MATH  Google Scholar 

  5. Saric WS. Görtler vortices. Annu Rev Fluid Mech, 1994, 26: 379–409

    Article  ADS  MathSciNet  Google Scholar 

  6. Floryan J M, Saric W S. Stability of Görtler vortices in boundary layers. AIAA J, 1982, 20(3): 316–324

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Floryan J M, Saric W S. Wavelength selection and growth of Görtler vortices. AIAA J, 1984, 22(11): 1529–1538

    Article  ADS  MATH  Google Scholar 

  8. Hall P. Taylor-Görtler vortices in fully developed or boundary-layer flows: linear theory. J Fluid Mech, 1982, 124: 475–494

    Article  ADS  MATH  Google Scholar 

  9. Hall P. The linear development of Görtler vortices in growing boundary layers. J Fluid Mech, 1983, 130: 41–58

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Day H P, Herbert T, Saric W S. Comparing local and marching analysis of Görtler instability. AIAA J, 1990, 28(6): 1010–1015

    Article  ADS  Google Scholar 

  11. Bottaro A, Luchini P. Görtler vortices: Are they amenable to local eigenvalue analysis? Eur J Mech-B/Fluids, 1999, 18(1): 47–65

    Article  MATH  MathSciNet  Google Scholar 

  12. Goulpié P, Klingmann B G B, Bottaro A. Görtler vortices in boundary layers with streamwise pressure gradient: Linear theory. Phys Fluids, 1996, 8(2): 451–459

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Wu X, Zhao D, Luo J. Excitation of steady and unsteady Görtler vortices by free-stream vortical disturbances. J Fluid Mech, 2011, 682: 66–100

    Article  MATH  MathSciNet  Google Scholar 

  14. Fedorov A. Transition and stability of high-speed boundary layers. Annu Rev Fluid Mech, 2011, 43: 79–95

    Article  ADS  Google Scholar 

  15. Zhong X, Wang X. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers. Annu Rev Fluid Mech, 2012, 44: 527–561

    Article  ADS  MathSciNet  Google Scholar 

  16. Fu Y, Hall P. Crossflow effects on the growth rate of inviscid Görtler vortices in a hypersonic boundary layer. J Fluid Mech, 1994, 276: 343–367

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Dando A H, Seddougui S O. The compressible Görtler problem in twodimensional boundary layers. IMA J Appl Math, 1993, 51(1): 27–67

    Article  MATH  MathSciNet  Google Scholar 

  18. Li F, Choudhari M, Chang C, et al. Development and breakdown of Görtler vortices in high speed boundary layers. AIAA Paper, 2010, AIAA-2010-0705

    Google Scholar 

  19. Hall P, Fu Y. On the Görtler vortex instability mechanism at hypersonic speeds. Theoretical and Computational Fluid Dyn, 1989, 1(3): 125–134

    Article  ADS  MATH  Google Scholar 

  20. Fu Y, Hall P. Effects of Görtler vortices, wall cooling and gas dissociation on the rayleigh instability in a hypersonic boundary layer. J Fluid Mech, 1993, 247: 503–525

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Hall P, Malik M. The growth of Görtler vortices in compressible boundary layers. J Eng Math, 1989, 23: 239–251

    Article  MATH  MathSciNet  Google Scholar 

  22. Spall R, Malik M. Goertler vortices in supersonic and hypersonic boundary layers. Phys Fluids A Fluid Dyn, 1989, 1(11): 1822–1835

    Article  ADS  MATH  Google Scholar 

  23. Whang C, Zhong X. Receptivity of Görtler vortices in hypersonic boundary layers. AIAA Paper, 2002, AIAA-2002-0151

    Google Scholar 

  24. Whang C, Zhong X. Leading edge receptivity of Görtler vortices in a mach 15 flow over a blunt wedge. AIAA Paper, 2003, AIAA-2003-0790

    Google Scholar 

  25. Swearingen J D, Blackwelder R F. The growth and breakdown of streamwise vortices in the presence of a wall. J Fluid Mech, 1987, 182: 255–290

    Article  ADS  Google Scholar 

  26. Hall P. The nonlinear development of Görtler vortices in growing boundary layers. J Fluid Mech, 1988, 193: 243–266

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Sabry A S, Liu J T C. Longitudinal vorticity elements in boundary layers: nonlinear development from initial Görtler vortices as a prototype problem. J Fluid Mech, 1991, 231: 615–663

    Article  ADS  MATH  Google Scholar 

  28. Lee K, Liu J T C. On the growth of mushroomlike structures in nonlinear spatially developing Goertler vortex flow. Phys Fluids A Fluid Dyn, 1992, 4(1): 95–103

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Li F, Malik M R. Fundamental and subharmonic secondary instabilities of Görtler vortices. J Fluid Mech, 1995, 297: 77–100

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Tandiono T, Winoto S H, Shah D A. Spanwise velocity component in nonlinear region of Görtler vortices. Phys Fluids, 2013, 25(10): 104104

    Article  ADS  Google Scholar 

  31. Kim M, Choi C, Yoon D. The onset of Görtler vortices in laminar boundary layer flow over a slightly concave wall. Eur J Mech-B/Fluids, 2010, 29(6): 407–414

    Article  MATH  MathSciNet  Google Scholar 

  32. Schrader L, Brandt L, Zaki T. Receptivity, instability and breakdown of Görtler flow. J Fluid Mech, 2011, 682: 362–396

    Article  MATH  Google Scholar 

  33. Boiko A V, Ivanov A V, Kachanov Y S, et al. Steady and unsteady Görtler boundary-layer instability on concave wall. Eur J Mech-B/Fluids, 2010, 29(2): 61–83

    Article  MATH  Google Scholar 

  34. Ren J, Fu S. Floquet analysis of fundamental, subharmonic and detuned secondary instabilities of Görtler vortices. Sci China-Phys Mech Astron, 2014, 57(3): 555–561

    Article  ADS  Google Scholar 

  35. Herbert T. Higher eigenstates of Görtler vortices. In: Müller U, Roesner K G, Schmidt B, eds. Recent Developments in Theoretical and Experimental Fluid Mechanics. Berlin, Heidelberg: Springer, 1979. 322–330

    Chapter  Google Scholar 

  36. Floryan J M. The second mode of the Görtler instability of boundary layers. AIAA J, 1985, 23(11): 1828–1830

    Article  ADS  MathSciNet  Google Scholar 

  37. Schlichting H, Gersten K. Boundary-Layer Theory. 8th ed. Berlin: Springer, 2000

    Book  MATH  Google Scholar 

  38. Schmid P J, Henningson D S. Stability and Transition in Shear Flows. New York: Springer-Verlag, 2001

    Book  MATH  Google Scholar 

  39. Zhang Y, Zhou H. Verification of parabolized stability equations for its application to compressible boundary layers. Appl Math Mech, 2007, 28(8): 987–998

    Article  MATH  MathSciNet  Google Scholar 

  40. El-hady N M, Verma A K. Growth of Görtler vortices in compressible boundary layers along curved surfaces. AIAA Paper, 1981, AIAA-1981-1278

    Google Scholar 

  41. Whang C, Zhong X. Direct numerical simulation of Görtler instability in hypersonic boundary layers. AIAA Paper, 1999, AIAA-1999-0291

    Google Scholar 

  42. Benmalek A, Saric W S. Effects of curvature variations on the nonlinear evolution of Görtler vortices. Phys Fluids, 1994, 6(10): 3353–3367

    Article  ADS  MATH  Google Scholar 

  43. Ren J, Fu S. Multiple Görtler modes in compressible boundary layer flows. AIAA Paper, 2012, AIAA-2012-3078

    Google Scholar 

  44. Ren J, Fu S. Nonlinear development of the multiple Görtler modes in hypersonic boundary layer flows. AIAA Paper, 2013, AIAA-2013-2467

    Google Scholar 

  45. Fu S, Wang L. RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory. Prog Aerospace Sci, 2013, 58: 36–59

    Article  ADS  Google Scholar 

  46. Wang L, Fu S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow Transition. Flow Turbulence Combustion, 2011, 87(1): 165–187

    Article  ADS  MATH  Google Scholar 

  47. Wang L, Fu S. Modelling flow transition in hypersonic boundary layer with Reynolds-averaged Navier-Stokes approach. Sci China Ser G-Phys Mech Astron, 2009, 52(5): 768–774

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Fu.

Additional information

Contributed by FU Song (Associate Editor-in-Chief)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Fu, S. Competition of the multiple Görtler modes in hypersonic boundary layer flows. Sci. China Phys. Mech. Astron. 57, 1178–1193 (2014). https://doi.org/10.1007/s11433-014-5454-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5454-9

Keywords

Navigation