Skip to main content
Log in

Finding new multipartite entangled resources for measurement-based quantum computation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Multipartite entangled resources play a key role in quantum information processing, and it is crucial to decide which kind of multipartite entangled states can be used as resources. In this paper, we propose a scheme for searching for new resources by finding what states can be converted into a known resource state. Using this scheme, we reveal a new set of resources, which are the ground states of nearest-neighbor two-body Hamiltonians, for the measurement-based quantum computation (MBQC). We also identify a set of states in the same class as the cluster state to achieve MBQC probabilistically. In building the scheme, we use a cell picture of multipartite entangled states proposed by us before to simplify the analysis of states, and propose a theorem for constructing generalized measurement with only post-measurement states. The two techniques can also be used in other quantum information processing tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article

References

  1. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  MATH  Google Scholar 

  2. Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., Van den Nest, M.: Measurement-based quantum computation. Nat. Phys. 5, 19 (2009)

    Article  Google Scholar 

  3. Verstraete, F., Cirac, J.I.: Valence-bond states for quantum computation. Phys. Rev. A 70, 060302(R) (2004)

    Article  ADS  Google Scholar 

  4. Bartlett, S.D., Rudolph, T.: Simple nearest-neighbor two-body Hamiltonian system for which the ground state is a universal resource for quantum computation. Phys. Rev. A 74, 040302(R) (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Chen, X., Zeng, B., Gu, Z.-C., Yoshida, B., Chuang, I.L.: Gapped two-body Hamiltonian whose unique ground state is universal for one-way quantum computation. Phys. Rev. Lett. 102, 220501 (2009)

    Article  ADS  Google Scholar 

  6. Chen, X., Duan, R., Ji, Z., Zeng, B.: Quantum state reduction for universal measurement based computation. Phys. Rev. Lett. 105, 020502 (2010)

    Article  ADS  Google Scholar 

  7. Wei, T.-C., Affleck, I., Raussendorf, R.: Affleck-Kennedy-Lieb-Tasaki state on a honeycomb lattice is a universal quantum computational resource. Phys. Rev. Lett. 106, 070501 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. Wei, T.-C., Affleck, I., Raussendorf, R.: Two-dimensional Affleck-Kennedy-Lieb-Tasaki state on the honeycomb lattice is a universal resource for quantum computation. Phys. Rev. A 86, 032328 (2012)

    Article  ADS  Google Scholar 

  9. Wei, T.-C., Raussendorf, R., Kwek, L.C.: Quantum computational universality of the Cai-Miyake-Dür-Briegel two-dimensional quantum state from Affleck-Kennedy-Lieb-Tasaki quasichains. Phys. Rev. A 84, 042333 (2011)

    Article  ADS  Google Scholar 

  10. Miller, J., Miyake, A.: Hierarchy of universal entanglement in 2D measurement-based quantum computation. npj Quantum Inf. 2, 16036 (2016)

    Article  ADS  Google Scholar 

  11. Wei, T.-C., Huang, C.-Y.: Universal measurement-based quantum computation in two-dimensional symmetry-protected topological phases. Phys. Rev. A 96, 032317 (2017)

    Article  ADS  Google Scholar 

  12. Chen, Y.Z., Prakash, A., Wei, T.-C.: Universal quantum computing using \((Zd)^3\) symmetry-protected topologically ordered states. Phys. Rev. A 97, 022305 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Mandel, O., Greiner, M., Widera, A., Rom, T., Hänsch, T.W., Bloch, I.: Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937 (2003)

    Article  ADS  Google Scholar 

  14. Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434, 169 (2005)

    Article  ADS  Google Scholar 

  15. Yao, X.C., Wang, T.X., Chen, H.Z., Gao, W.B., Fowler, A.G., Raussendorf, R., Chen, Z.B., Liu, N.L., Lu, C.Y., Deng, Y.J., Chen, Y.A., Pan, J.W.: Experimental demonstration of topological error correction. Nature 482, 489 (2012)

    Article  ADS  Google Scholar 

  16. Lanyon, B.P., Jurcevic, P., Zwerger, M., Hempel, C., Martinez, E.A., Dür, W., Briegel, H.J., Blatt, R., Roos, C.F.: Measurement-based quantum computation with trapped ions. Phys. Rev. Lett. 111, 210501 (2013)

    Article  ADS  Google Scholar 

  17. Cai, Y., Roslund, J., Ferrini, G., Arzani, F., Xu, X., Fabre, C., Treps, N.: Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8, 15645 (2017)

    Article  ADS  Google Scholar 

  18. Kaltenbaek, R., Lavoie, J., Zeng, B., Bartlett, S.D., Resch, K.J.: Optical one-way quantum computing with a simulated valence-bond solid. Nat. Phys. 6, 850 (2010)

    Article  Google Scholar 

  19. Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799 (1987)

    Article  ADS  Google Scholar 

  20. Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys. 115, 477 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  21. Raussendorf, R.: Shaking up ground states. Nat. Phys. 6, 840 (2010)

    Article  Google Scholar 

  22. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Su, P.Y., Li, W.D., Ma, X.P., Liu, K., Wang, Z.M., Gu, Y.J.: A new method for quantifying entanglement of multipartite entangled states. Quantum Inf Process 16, 190 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Verstraete, F., Martin-Delgado, M.A., Cirac, J. I.: Diverging entanglement length in gapped quantum spin systems. Phys. Rev. Lett. 92, 087201 (2004)

    Article  ADS  Google Scholar 

  25. Verstraete, F., Wolf, M.M., Perez-Garcia, D., Cirac, J.I.: Criticality, the area law, and the computational power of projected entangled pair states. Phys. Rev. Lett. 96, 220601 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Gross, D., Eisert, J.: Novel schemes for measurement-based quantum computation. Phys. Rev. Lett. 98, 220503 (2007)

    Article  ADS  Google Scholar 

  27. Carleo, G., Troyer, M.: Solving the quantum many-body problem with artificial neural networks. Science 355, 602 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Sanz, M., Wolf, M.M., Perez-Garcia, D., Cirac, J.I.: Matrix product states: symmetries and two-body Hamiltonians. Phys. Rev. A 79, 042308 (2009)

    Article  ADS  Google Scholar 

  29. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  30. Gour, G., Wallach, N.R.: Classification of multipartite entanglement of all finite dimensionality. Phys. Rev. Lett. 111, 060502 (2013)

    Article  ADS  Google Scholar 

  31. Grover, T., Senthil, T.: Quantum spin nematics, dimerization, and deconfined criticality in quasi-1D spin-one magnets. Phys. Rev. Lett. 98, 247202 (2007)

    Article  ADS  Google Scholar 

  32. Buchta, K., Fáth, G., Legeza, Ö., Sólyom, J.: Probable absence of a quadrupolar spin-nematic phase in the bilinear-biquadratic spin-1 chain. Phys. Rev. B 72, 054433 (2005)

    Article  ADS  Google Scholar 

  33. Schollwöck, U., Jolicoeur, Th., Garel, T.: Onset of incommensurability at the valence-bond-solid point in the S=1 quantum spin chain. Phys. Rev. B 53, 3304 (1996)

    Article  ADS  Google Scholar 

  34. Barber, M.N., Batchelor, M.T.: Spectrum of the biquadratic spin-1 antiferromagnetic chain. Phys. Rev. B 40, 4621 (1989)

    Article  ADS  Google Scholar 

  35. Imambekov, A., Lukin, M., Demler, E.: Spin-exchange interactions of spin-one bosons in optical lattices: singlet, nematic, and dimerized phases. Phys. Rev. A 68, 063602 (2003)

    Article  ADS  Google Scholar 

  36. Rizzi, M., Rossini, D., De Chiara, G., Montangero, S., Fazio, R.: Phase diagram of spin-1 bosons on one-dimensional lattices. Phys. Rev. Lett. 95, 240404 (2005)

    Article  ADS  Google Scholar 

  37. Shang, J., Gühne, O.: Convex optimization over classes of multiparticle entanglement. Phys. Rev. Lett. 120, 050506 (2018)

    Article  ADS  Google Scholar 

  38. Nielsen, M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999)

    Article  ADS  Google Scholar 

  39. Miyake, A.: Quantum computational capability of a 2D valence bond solid phase. Ann. Phys. 3267, 1656 (2011)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

Support from Natural Science Foundation of Shandong Province of China (Grant No. ZR2014AQ026, No. ZR2021ZD19), the Fundamental Research Funds for the Central Universities (Grants No. 202165008) and National Natural Science Foundation of China (Grant No. 61701464, 61575180). YZZ was supported by the Australian Research Council through Discovery Project DP190101529

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wendong Li or Yongjian Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Ma, X., Lee, YH. et al. Finding new multipartite entangled resources for measurement-based quantum computation. Quantum Inf Process 22, 130 (2023). https://doi.org/10.1007/s11128-023-03870-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03870-0

Keywords

Navigation