Skip to main content
Log in

Atom-atom entanglement characteristics in fiber-connected cavities system within the double-excitation space

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Starting from a rudimentary quantum-networks model that consists of two two-level confined atoms locating respectively in spatially-separated cavities coupled by fiber, we investigate the complex entanglement characteristics of the composite system analytically under the maximally initial entangled state that generates two excitations simultaneously during the temporal-evolution process. Our calculation clearly shows that, through mediating the atom-cavity coupling strength and photon-photon hopping rate appropriately, the entanglement dynamics displays some distinctive temporal properties differing from those obtained in one-excitation space, characterized partially by these newly quantum phenomena termed as entanglement sudden death and recurrence. Effectively, within the framework of two excitations, we suggest the purposeful manipulations of atomic entanglement communication for quantum networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement. Rev Mod Phys, 2009, 81: 865–942

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390: 575–579

    Article  ADS  Google Scholar 

  4. Cirac J I, Zoller P, Kimble H J, et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys Rev Lett, 1997, 78: 3221–3224

    Article  ADS  Google Scholar 

  5. Serafini A, Mancini S, Bose S. Distributed quantum computation via optical fibers. Phys Rev Lett, 2006, 96: 010503

    Article  ADS  Google Scholar 

  6. Kimble H J. The quantum internet. Nature, 2008, 453: 1023–1030

    Article  ADS  Google Scholar 

  7. Duan L M, Monroe C. Quantum networks with trapped ions. Rev Mod Phys, 2010, 82: 1209–1224

    Article  ADS  Google Scholar 

  8. Yin Z Q, Li F L. Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber. Phys Rev A, 2007, 75: 012324

    Article  ADS  Google Scholar 

  9. Yang Z B, Wu H Z, Su W J, et al. Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces. Phys Rev A, 2009, 80: 012305

    Article  ADS  Google Scholar 

  10. Zhang K, Li Z Y. Transfer behavior of quantum states between atoms in photonic crystal coupled cavities. Phys Rev A, 2010, 81: 033843

    Article  ADS  Google Scholar 

  11. Yang W L, Yin Z Q, Xu Z Y, et al. Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities. Phys Rev A, 2011, 84: 043849

    Article  ADS  Google Scholar 

  12. Liao J Q, Gong Z R, Zhou L, et al. Controlling the transport of single by tuning the frequency of either one or two cavities in an array of coupled cavities. Phys Rev A, 2010, 81: 042304

    Article  ADS  Google Scholar 

  13. Yu X Y, Li J H, Li X B. Non-zero quantum discord at finite temperature. Sci China-Phys Mech Astron, 2012, 55: 815–821

    Article  ADS  Google Scholar 

  14. Wootters W K. Entanglement of formation of an arbitrary state of two qubits. Phys Rev Lett, 1998, 80: 2245–2248

    Article  ADS  Google Scholar 

  15. Yu T, Eberly J H. Sudden death of entanglement. Science, 2009, 323: 598–601

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Bellomo B, Franco R L, Compagno G. Non-Markovian effects on the dynamics of entanglement. Phys Rev Lett, 2007, 99: 160502

    Article  ADS  Google Scholar 

  17. Wilk T, Webster S C, Kuhn A, et al. Single-atom single-photon quantum interface. Science, 2007, 317: 488–490

    Article  ADS  Google Scholar 

  18. Hijlkema M, Weber B, Specht H P, et al. A single-photon server with just one atom. Nat Phys, 2007, 3: 253–255

    Article  Google Scholar 

  19. Spillane S M, Kippenberg T J, Painter O J, et al. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys Rev Lett, 2003, 91: 043902

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiangYang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Li, J. & Li, X. Atom-atom entanglement characteristics in fiber-connected cavities system within the double-excitation space. Sci. China Phys. Mech. Astron. 55, 1813–1819 (2012). https://doi.org/10.1007/s11433-012-4851-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4851-1

Keywords

Navigation