Skip to main content
Log in

Levenberg-Marquardt based artificial physics method for mobile robot oscillation alleviation

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

This paper proposed a modified artificial physics (AP) method to solve the autonomous navigation problem for mobile robots in complex environments. The basic AP method tends to cause oscillations in the presence of obstacles and in narrow passages, which can result in time consumption. To alleviate oscillation, we modified the AP method using the Levenbery-Marquardt (LM) algorithm. In the modified AP method, we altered the original directions of AP forces to the Newton direction, and adjust the parameter by the LM algorithm. A series of comparative experimental results show that the modified AP method can achieve smoother trajectories with less time consumption. This demonstrates the feasibility and effectiveness of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spears W M, Spears D F, Hamann J C, et al. Distributed, physics-based control of swarms of vehicles. Auton Robot, 2004, 17(2–3): 137–162

    Article  Google Scholar 

  2. Warren W S, Rabitz H, Dahleh M. Coherent control of quantum dynamics-the dream is alive. Science, 1993, 259(5101): 1581–1589

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Adleman L. Molecular computation of solutions to combinatorial problems. Science, 1999, 266(5187): 1021–1024

    Article  ADS  Google Scholar 

  4. Spears W M, Gordon D F. Using artificial physics to control agents. In: Proceedings of the IEEE Conference on Information, Intelligence, and System, Washington DC, USA, 1999. 281–288

    Google Scholar 

  5. Spears W M, Spears D F, Heil R, et al. An overview of physicomimetics. In: Swarm Robotics: Lecture Notes in Computer Science. Berlin: Springer-Verlag Press, 2005. 84–97

    Chapter  Google Scholar 

  6. Jin Y C, Guo H L, Meng Y. A hierarchical gene regulatory network for adaptive multi-robot pattern formation. IEEE Trans Syst Man Cybern B, 2012, 42(3): 805–816

    Article  Google Scholar 

  7. Jin Y C, Meng Y. Morphogenetic robotics: an emerging new field in developmental robotics. IEEE Trans Syst Man Cybern C, 2011, 41(2): 145–160

    Article  Google Scholar 

  8. Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Automat Contr, 2006, 51(3): 401–420

    Article  MathSciNet  Google Scholar 

  9. Zhang H X, Zhang Z, Yuan X X, et al. Physical analysis and numerical simulation for the dynamic behaviour of vehicles in pitching oscillations or rocking motions. Sci China Ser E-Tech Sci, 2007, 50(4): 385–401

    Article  Google Scholar 

  10. Duan H B, Liu S Q. Unmanned air/ground vehicles heterogeneous cooperative techniques: Current status and prospects. Sci China-Tech Sci, 2010, 53(5): 1349–1355

    Article  MathSciNet  Google Scholar 

  11. Khatib O. Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res, 1986, 5(1): 90–98

    Article  MathSciNet  Google Scholar 

  12. Jing X J, Wang Y C, Tan D L. Artificial coordinating field and its application to motion planning of robots in uncertain dynamic environments. Sci China Ser E-Eng Mater Sci, 2004, 47(5): 577–594

    Article  MATH  MathSciNet  Google Scholar 

  13. Ren J, McIsaac K A, Patel R V. Modified Newton’s method applied to potential field-based navigation for mobile robots. IEEE Trans Robot, 2006, 22(2): 384–391

    Article  Google Scholar 

  14. Ren J, McIsaac K A, Patel R V. Modified Newton’s method applied to potential field-based navigation for nonholonomic robots in dynamic environments. Robotica, 2008, 26(1): 117–127

    Article  Google Scholar 

  15. Lourakis M I A. A brief description of the Levenberg-Marquardt algorithm implemened. 2005, http://www.ics.forth.gr/~lourakis/levmar/

    Google Scholar 

  16. Zhang Y P, Duan H B, Zhang X Y. Stable flocking of multiple agents based on molecular potential field and distributed receding horizon control. Chin Phys Lett, 2011, 28(4): 040503

    Article  ADS  Google Scholar 

  17. Hettiarachchi S, Spears W M. Distributed adaptive swarm for obstacle avoidance. Int J Intell Comp Cybern, 2009, 2(4): 644–671

    Article  MATH  MathSciNet  Google Scholar 

  18. Zarzhitsky D V, Spears D F, Thayer D R. Experimental studies of swarm robotic chemical plume tracing using computational fluid dynamics simulations. Int J Intell Comp Cybern, 2010, 3(4): 631–671

    Article  MathSciNet  Google Scholar 

  19. Li P, Duan H B. Path planning of unmanned aerial vehicle based on improved gravitational search algorithm. Sci China-Tech Sci, 2012, 55(10): 2712–2719

    Article  Google Scholar 

  20. Duan H B, Shao S, Su B W, et al. New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle. Sci China-Tech Sci, 2010, 53(8): 2025–2031

    Article  Google Scholar 

  21. Agirrebeitia J, Aviles R, Bustos I F, et al. A new APF strategy for path planning in environments with obstacles. Mech Mach Theory, 2005, 40(6): 645–658

    Article  MATH  MathSciNet  Google Scholar 

  22. Nocedal J, Wright S J. Numerical Optimization. New York: Springer Press, 1999

    Book  MATH  Google Scholar 

  23. Yuan Y X, Sun W Y. Optimization Theory and Methods. Beijing: Science Press, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiBin Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Duan, H. & Luo, Q. Levenberg-Marquardt based artificial physics method for mobile robot oscillation alleviation. Sci. China Phys. Mech. Astron. 57, 1771–1777 (2014). https://doi.org/10.1007/s11433-013-5244-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5244-9

Keywords

Navigation