Skip to main content
Log in

A smart path planner for wheeled mobile robots using adaptive particle swarm optimization

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Finding the shortest path to the destination is a vital need for autonomous mobile robots. In this article, a smart adaptive particle swarm optimization (APSO) algorithm is proposed for robot path planning. It allows the robot to reach the target point with the shortest possible path and to avoid the obstacles safely in uncertain environments. A new objective function is derived with distance function and a path smoothening parameter is integrated to avoid sharp turns. The results of the proposed method rely on computer simulation and real robot experimentation in different environments. It is proved that they are in good agreement. A comparative study between the proposed algorithm and various other algorithms is also presented. The results showed that the proposed smart algorithm is capable of successfully avoiding various types of obstacles including the local minima situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Li Y, Zhu H (2018) A simple optimization method for the design of a lightweight, explosion-proof housing for a coal mine rescue robot. J Braz Soc Mech Sci Eng 40:340. https://doi.org/10.1007/s40430-018-1264-8

    Article  Google Scholar 

  2. Keshavarzian H, Daneshjou K (2020) (2020) PSO-based online estimation of aerodynamic ground effect in the backstepping controller of quadrotor. J Braz Soc Mech Sci Eng 42:555. https://doi.org/10.1007/s40430-020-02614-w

    Article  Google Scholar 

  3. Mac TT, Copot C, Tran DT, De Keyser R (2016) Heuristic approaches in robot path planning: a survey. Robot Auto Syst 86:13–28

    Article  Google Scholar 

  4. Patle BK, Pandey A, Parhi DRK, Jagadeesh A (2019) A review: on path planning strategies for navigation of mobile robot. Defence Technology

  5. Cai C, Ferrari S (2009) Information-driven sensor path planning by approximate cell decomposition. IEEE Trans Syst Man Cyber, Part B (Cyber) 39(3): 672–689.

  6. Garrido S, Moreno L, Abderrahim M, Martin F (2006) Path planning for mobile robot navigation using voronoi diagram and fast marching. Intelligent robots and systems 2006 ieee/rs, international conference on 2006. IEEE, New York, pp 2376–2381

    Chapter  Google Scholar 

  7. Ma L, Xue J, Kawabata K, Zhu J, Ma C, Zheng N (2015) Efficient sampling-based motion planning for on-road autonomous driving. IEEE Trans Intell Transp Syst 16(4):1961–1976

    Article  Google Scholar 

  8. Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J Robo Res 30(7):846–894

    Article  Google Scholar 

  9. Singh NN, Chatterjee A, Chatterjee A, Rakshit A (2011) A two-layered subgoal based mobile robot navigation algorithm with vision system and IR sensors. Measurement 44(4):620–641

    Article  Google Scholar 

  10. Wu Z, Hu G, Feng L, Wu J, Liu S (2016) Collision avoidance for mobile robots based on artificial potential field and obstacle envelope modelling. Assembl Autom 36(3):318–332

    Article  Google Scholar 

  11. Montiel O, Orozco-Rosas U, Sepúlveda R (2015) Path planning for mobile robots using bacterial potential field for avoiding static and dynamic obstacles. Expert Syst Appl 42(12):5177–5191

    Article  Google Scholar 

  12. Yu ZZ, Yan JH, Zhao J, Chen ZF, Zhu YH (2011) Mobile robot path planning based on improved artificial potential field method. J Harbin Inst Tech 43(1):50–55

    Google Scholar 

  13. Korayem MH, Nazemizadeh M, Nohooji HR (2014) Optimal point-to-point motion planning of non-holonomic mobile robots in the presence of multiple obstacles. J Braz Soc Mech Sci Eng 36:221–232. https://doi.org/10.1007/s40430-013-0063-5

    Article  Google Scholar 

  14. Rubio Y, Picos K, Orozco-Rosas U, Sepúlveda C, Ballinas E, Montiel O, Sepúlveda R (2018) Path following fuzzy system for a nonholonomic mobile robot based on frontal camera information. Fuzzy logic augmentation of neural and optimization algorithms: theoretical aspects and real applications. Springer, Cham, pp 223–240

    Google Scholar 

  15. Singh NH, Thongam K (2018) Mobile robot navigation using fuzzy logic in static environments. Proc Comput Sci 125:11–17

    Article  Google Scholar 

  16. Zhao R, Lee HK (2017) Fuzzy-based path planning for multiple mobile robots in unknown dynamic environment. J Elec Eng Tech 12(2):918–925

    Article  Google Scholar 

  17. Janglová D (2004) Neural networks in mobile robot motion. Int J Adv Rob Syst 1(1):2

    Article  Google Scholar 

  18. Yang SX, Meng M (2000) An efficient neural network approach to dynamic robot motion planning. Neural Netw 13(2):143–148

    Article  Google Scholar 

  19. Mohanty PK, Parhi DR (2014) A new intelligent motion planning for mobile robot navigation using multiple adaptive neuro-fuzzy inference system. Appl Math Inf Sci 8(5):2527

    Article  Google Scholar 

  20. Al-Khatib M, Saade JJ (2003) An efficient data-driven fuzzy approach to the motion planning problem of a mobile robot. Fuzzy Sets Syst 134(1):65–82

    Article  MathSciNet  Google Scholar 

  21. Pandey A, Burse K (2016) Cascade neuro-fuzzy architecture based mobile-robot navigation and obstacle avoidance in static and dynamic environments.

  22. Parhi DR, Mohanty PK (2016) IWO-based adaptive neuro-fuzzy controller for mobile robot navigation in cluttered environments. Int J Adv Manuf Tech 83(9–12):1607–1625

    Article  Google Scholar 

  23. Sahu D, Mishra AK (2017) Mobile robot path planning by genetic algorithm with safety parameter. Int J Eng Sci 14723.

  24. Ismail AT, Sheta A, Al-Weshah M (2008) A mobile robot path planning using genetic algorithm in static environment. J Comput Sci 4(4):341–344

    Article  Google Scholar 

  25. Cai Z, Peng Z (2002) Cooperative coevolutionary adaptive genetic algorithm in path planning of cooperative multi-mobile robot systems. J Intell Rob Syst 33(1):61–71

    Article  Google Scholar 

  26. Tuncer A, Yildirim M (2012) Dynamic path planning of mobile robots with improved genetic algorithm. Comput Electr Eng 38(6):1564–1572

    Article  Google Scholar 

  27. Amer NH, Zamzuri H, Hudha K (2018) Path tracking controller of an autonomous armoured vehicle using modified Stanley controller optimized with particle swarm optimization. J Braz Soc Mech Sci Eng 40:104

  28. Abdalla TY, Abed AA, Ahmed AA (2017) Mobile robot navigation using PSO-optimized fuzzy artificial potential field with fuzzy control. J Intell Fuzzy Syst 32(6):3893–3908

    Article  Google Scholar 

  29. Setyawan N, Kadir REA, Jazidie A (2017) Adaptive Gaussian parameter particle swarm optimization and its implementation in mobile robot path planning. Intelligent Technology and Its Applications (ISITIA), International Seminar on 2017. IEEE, New York, pp 238–243

    Chapter  Google Scholar 

  30. Tang B, Zhanxia Z, Luo J (2017) A convergence-guaranteed particle swarm optimization method for mobile robot global path planning. Assembly Autom 37(1):114–129

    Article  Google Scholar 

  31. Mac TT, Copot C, Tran DT, De Keyser R (2017) A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization. Applied Soft Comput 59:68–76

    Article  Google Scholar 

  32. Ever YK (2017) Using simplified swarm optimization on path planning for intelligent mobile robot. Proc Comput Sci 120:83–90

    Article  Google Scholar 

  33. Yadav PK, Mohanta JC, Mohanty SR (2016) An improved path planning approach for mobile robot navigation based on particle swarm optimization. Date: 12th June, 2016 Hyderabad, 24.

  34. Alam MS, Rafique MU (2015) Mobile robot path planning in environments cluttered with non-convex obstacles using particle swarm optimization. Control automation and robotics ICCAR international conference on 2015. IEEE, New York, pp 32–36

    Chapter  Google Scholar 

  35. Alam MS, Rafique MU, Khan MU (2015) Mobile robot path planning in static environments using particle swarm optimization. Int J Comput Sci Electro Eng 3(3)

  36. Wang X, Zhang G, Zhao J, Rong H, Ipate F, Lefticaru R (2015) A modified membrane-inspired algorithm based on particle swarm optimization for mobile robot path planning. Int J Comput Commun Control 10(5):732–745

    Article  Google Scholar 

  37. Mo H, Xu L (2015) Research of biogeography particle swarm optimization for robot path planning. Neurocomput 148:91–99

    Article  Google Scholar 

  38. Yusof TST, Toha SF, Yusof HM (2015) Path planning for visually impaired people in an unfamiliar environment using particle swarm optimization. Proc Comput Sci 76:80–86

    Article  Google Scholar 

  39. Song B, Wang Z, Zou L (2017) On global smooth path planning for mobile robots using a novel multimodal delayed PSO algorithm. Cognit Comput 9(1):5–17

    Article  Google Scholar 

  40. Arana-Daniel N, Gallegos AA, López-Franco C, Alanis AY (2014) Smooth global and local path planning for mobile robot using particle swarm optimization, radial basis functions, splines and Bézier curves. 2014 IEEE congress on evolutionary computation (CEC). IEEE, New York, pp 175–182

    Chapter  Google Scholar 

  41. Zhou F, Song B, Tian G (2011) B\’{e} zier curve based smooth path planning for mobile robot. J Inf Comput Sci 8(12):2441–2450

    Google Scholar 

  42. On S, Yazici A (2011) A comparative study of smooth path planning for a mobile robot considering kinematic constraints. 2011 International symposium on innovations in intelligent systems and applications. IEEE, New York, pp 565–569

    Chapter  Google Scholar 

  43. Ho YJ, Liu JS (2009) Collision-free curvature-bounded smooth path planning using composite Bezier curve based on Voronoi diagram. 2009 IEEE international symposium on computational intelligence in robotics and automation-(CIRA). IEEE, New York, pp 463–468

    Google Scholar 

  44. Jolly KG, Kumar RS, Vijayakumar R (2009) A Bezier curve based path planning in a multi-agent robot soccer system without violating the acceleration limits. Rob Auto Syst 57(1):23–33

    Article  Google Scholar 

  45. Chen X, Li Y (2006) Smooth path planning of a mobile robot using stochastic particle swarm optimization. 2006 International conference on mechatronics and automation. IEEE, New York, pp 1722–1727

    Chapter  Google Scholar 

  46. Kennedy J (2011) Particle swarm optimization. Encyclopedia of machine learning. Springer, Boston, pp 760–766

    Google Scholar 

  47. Kulkarni RV, Venayagamoorthy GK (2007) An estimation of distribution improved particle swarm optimization algorithm. In: 2007 3rd international conference on intelligent sensors, sensor networks and information, IEEE, New York, pp 539–544

  48. Bansal JC, Singh PK, Saraswat M, Verma A, Jadon SS, Abraham A (2011) Inertia weight strategies in particle swarm optimization. In: 2011 Third world congress on nature and biologically inspired computing, IEEE, New York, pp 633–640

  49. Mohamed AZ, Lee SH, Hsu HY, Nath N (2012) A faster path planner using accelerated particle swarm optimization. Artif Life Rob 17(2):233–240

    Article  Google Scholar 

  50. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Evolutionary Computation Proceedings, 1998. IEEE world congress on computational intelligence., The 1998 IEEE International Conference. IEEE, Newyork, pp 69–73

  51. Song B, Wang Z, Sheng L (2016) A new genetic algorithm approach to smooth path planning for mobile robots. Assembl Autom 36(2):138–145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prases K. Mohanty.

Additional information

Technical Editor: Adriano Almeida Gonçalves Siqueira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, P.K., Dewang, H.S. A smart path planner for wheeled mobile robots using adaptive particle swarm optimization. J Braz. Soc. Mech. Sci. Eng. 43, 101 (2021). https://doi.org/10.1007/s40430-021-02827-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-02827-7

Keywords

Navigation