Skip to main content
Log in

Model-independent trend of α-preformation probability

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The α-preformation probability is directly deduced from experimental α decay energies and half-lives in an analytical way without any modified parameters. Several other model-deduced results, are used to compare with that of the present study. The key role played by the shell effects in the α-preformation process is indicated in all these cases. In detail, the α-preformation factors of different theoretical extractions are found to have similar behavior for one given isotopic chain, implying the model-independent varying trend of the preformation probability of α particle. In addition, the formation probability of heavier particle in cluster radioactivity is also obtained, and this confirms the relationship between the cluster preformation factor and the product of the cluster and daughter proton numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao Z X, Ye Y L. Study of the structure of unstable nuclei through the reaction experiments. Sci China-Phys Mech Astron, 2011, 54: s1–s5

    ADS  Google Scholar 

  2. Liu W P, Li Z H, Bai X X, et al. BRIF and CARIF progress. Sci China-Phys Mech Astron, 2011, 54: s14–s17

    Article  ADS  Google Scholar 

  3. Ma Y G, Fang D Q, Sun X Y, et al. Measurements on diproton emission from the break-up channels of 23Al and 22Mg. Sci China-Phys Mech Astron, 2011, 54: s18–s23

    Article  ADS  Google Scholar 

  4. He C, Li X Q, Hua H, et al. A new implantation and beta detection system used in the beta-decay studies (in Chinese). Sci Sin-Phys Mech Astron, 2012, 42(10): 1056–1061

    Article  Google Scholar 

  5. Xu S W, Li Z K, Xie Y X, et al. β-delayed proton emission near the proton drip line (in Chinese). Sci China Ser G-Phys Mech Astron, 2005, 35(1): 1–10

    Google Scholar 

  6. Hua H, Li Z H, Ye Y L, et al. Beta-decay studies of the neutron-rich 18,21N isotopes. Sci China-Phys Mech Astron, 2011, 54: s53–s60

    Article  ADS  Google Scholar 

  7. Lin C J, Xu X X, Jia H M, et al. Experimental research into the twoproton emissions from 17,18Ne, 28P and 28,29S. Sci China-Phys Mech Astron, 2011, 54: s73–s80

    Article  ADS  Google Scholar 

  8. Wang Z J, Ren Z Z. Investigation of proton halos in 28S by electron elastic scattering (in Chinese). Sci China Ser G-Phys Mech Astron, 2003, 33(5): 385–392

    Google Scholar 

  9. Hofmann S, Münzenberg G. The discovery of the heaviest elements. Rev Mod Phys, 2000, 72: 733–767 and references therein

    Article  ADS  Google Scholar 

  10. Oganessian Yuri. Heaviest nuclei from 48Ca-induced reactions. J Phys G-Nucl Part Phys, 2007, 34: R165–R242 and references therein

    Article  ADS  Google Scholar 

  11. Stavsetra L, Gregorich K E, Dvorak J, et al. Independent verification of element 114 production in the 48Ca+242Pu reaction. Phys Rev Lett, 2009, 103: 132502

    Article  ADS  Google Scholar 

  12. Morita K, Morimoto K, Kaji D, et al. Experiment on the synthesis of element 113 in the reaction 209Bi(70Zn,n)278113. J Phys Soc Jpn, 2004, 73: 2593–2596

    Article  ADS  Google Scholar 

  13. Oganessian Yu Ts, Abdullin F Sh, Alexander C, et al. Production and decay of the heaviest nuclei 293,294117 and 294118. Phys Rev Lett, 2012, 109: 162501

    Article  ADS  Google Scholar 

  14. Rutherford E, Geiger H. The charge and nature of the α-particle. Proc R Soc London A, 1908, 81: 162–173

    Article  ADS  Google Scholar 

  15. Rutherford E, Royds T. The nature of the α particle from radioactive substances. Philos Magn, 1909, 17: 281–286

    Google Scholar 

  16. Gamow G. Quantum theory of atomic nucleus. Z Phys, 1928, 51: 204–212

    Article  ADS  MATH  Google Scholar 

  17. Condon E U, Gurney R W. Wave mechanics and radioactive disintegration. Nature, 1928, 122: 439

    Article  ADS  MATH  Google Scholar 

  18. Tonozuka I, Arima A. Surface α-clustering and α-decays of 212Po. Nucl Phys A, 1979, 323: 45–60

    Article  ADS  Google Scholar 

  19. Ren Z Z, Xu G O. Reduced alpha transfer rates in a schematic model. Phys Rev C, 1987, 36: 456–459; Ren Z Z, Xu G O. Evidence of α correlation from binding energies in medium and heavy nuclei. Phys Rev C, 1988, 38: 1078–1080

    Article  ADS  Google Scholar 

  20. Varga K, Lovas R G, Liotta R J. Absolute alpha decay width of 212Po in a combined shell and cluster model. Phys Rev Lett, 1992, 69: 37–40

    Article  ADS  Google Scholar 

  21. Buck B, Merchant A C, Perez S M. Half-lives of favored alpha decays from nuclear ground states. At Data Nucl Data Tables, 1993, 54: 53–73

    Article  ADS  Google Scholar 

  22. Lovas R G, Liotta R J, Insolia A, et al. Microscopic theory of cluster radioactivity. Phys Rep, 1998, 294: 265–362

    Article  ADS  Google Scholar 

  23. Royer G. Alpha emission and spontaneous fission through quasimolecular shapes. J Phys G-Nucl Part Phys, 2000, 26: 1149–1170

    Article  ADS  Google Scholar 

  24. Denisov V Yu, Ikezoe H. α-nucleus potential for α-decay and sub-barrier fusion. Phys Rev C, 2005, 72: 064613

    Article  ADS  Google Scholar 

  25. Mohr P. α-nucleus potentials, α-decay half-lives, and shell closures for superheavy nuclei. Phys Rev C, 2006, 73: 031301 (R)

    Google Scholar 

  26. Gambhir Y K, Bhagwat A, Gupta M. α-decay half-lives of the observed superheavy nuclei (Z = 108–118). Phys Rev C, 2005, 71: 037301

    Article  ADS  Google Scholar 

  27. Xu C, Ren Z Z. Global calculation of α-decay half-lives with a deformed density-dependent cluster model. Phys Rev C, 2006, 74: 014304

    Article  ADS  Google Scholar 

  28. Delion D S, Peltonen S, Suhonen J. Systematics of the α-decay to rotational states. Phys Rev C, 2006, 73: 014315

    Article  ADS  Google Scholar 

  29. Pei J C, Xu F R, Lin Z J, et al. α-decay calculations of heavy and superheavy nuclei using effective mean-field potentials. Phys Rev C, 2007, 76: 044326

    Article  ADS  Google Scholar 

  30. NI D D, Ren Z Z. Half-lives and fine structure for the α decay of deformed even-even nuclei. Sci China-Phys Mech Astron, 2011, 54: s24–s31

    Article  ADS  Google Scholar 

  31. Wang S M, Xu C, Liotta R J, et al. Alpha-particle decays from excited states in 24Mg. Sci China-Phys Mech Astron, 2011, 54: s130–s135

    Article  ADS  Google Scholar 

  32. Hodgson P E, Běták E. Cluster emission, transfer and capture in nuclear reactions. Phys Rep, 2003, 374: 1–89

    Article  ADS  Google Scholar 

  33. Zhang H F, Royer G. α particle preformation in heavy nuclei and penetration probability. Phys Rev C, 2008, 77: 054318

    Article  ADS  Google Scholar 

  34. Zhang G L, Le X Y, Zhang H Q. Determination of α preformation for heavy nuclei. Nucl Phys A, 2009, 823: 16–25

    Article  ADS  Google Scholar 

  35. Ismail M, Ellithi A Y, Botros M M, et al. Systematics of α-decay halflives around shell closures. Phys Rev C, 2010, 81: 024602

    Article  ADS  Google Scholar 

  36. Seif W M, Shalaby M, Alrakshy M F. Isospin asymmetry dependence of the α spectroscopic factor for heavy nuclei. Phys Rev C, 2011, 84: 064608

    Article  ADS  Google Scholar 

  37. Qian Y B, Ren Z Z, Ni D D. Calculations of α-decay half-lives for heavy and superheavy nuclei. Phys Rev C, 2011, 83: 044317

    Article  ADS  Google Scholar 

  38. Qian Y B, Ren Z Z, Ni D D. α-decay half-lives in medium mass nuclei. J Phys G-Nucl Part Phys, 2011, 38: 015102

    Article  ADS  Google Scholar 

  39. Ni D D, Ren Z Z. Microscopic calculation of α-decay half-lives within the cluster model. Nucl Phys A, 2009, 825: 145–158

    Article  ADS  Google Scholar 

  40. Ren Z Z, Xu C, Wang Z J. New perspective on complex cluster radioactivity of heavy nuclei. Phys Rev C, 2004, 70: 034304

    Article  ADS  Google Scholar 

  41. Qian Y B, Ren Z Z. Unified description of α-decay and cluster radioactivity in the trans-tin region. J Phys G-Nucl Part Phys, 2012, 39: 015103

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongZhou Ren.

Additional information

Contributed by REN ZhongZhou (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, Y., Ren, Z. Model-independent trend of α-preformation probability. Sci. China Phys. Mech. Astron. 56, 1520–1524 (2013). https://doi.org/10.1007/s11433-013-5159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5159-5

Keywords

Navigation