Skip to main content
Log in

Alpha-particle decays from excited states in 24Mg

  • Research Paper
  • Radioactive Nuclear Beam Physics and Nuclear Astrophysics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Using a cluster model based on the Woods-Saxon potential, alpha-particle decays from excited states in 24Mg have been systematically investigated. Calculations can in general reproduce experimental data, noticing the fact that the preformation factor P of alpha particle in alpha-decaying nuclei is of order from 100 to 10−2. This can be the evidence for the α+20Ne structure in 24Mg. Meanwhile, the results also show the existence of other configurations, such as 16O+2α. Since the calculated decay widths are very sensitive to the angular momentum carried by the outgoing cluster (α particle), our results could serve as a guide to experimental spin assignments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toth K S, Ellis-Akovali Y A, Bingham C R, et al. Evidence from alpha decay that Z = 82 is not magic for light Pb isotopes. Phys Rev Lett, 1984, 53(17): 1623–1626

    Article  ADS  Google Scholar 

  2. Wauters J, Bijnens N, Dendooven P, et al. Fine structure in the alpha decay of even-even nuclei as an experimental proof for the stability of the Z = 82 magic shell at the very neutron-deficient side. Phys Rev Lett, 1994, 72(9): 1329–1332

    Article  ADS  Google Scholar 

  3. Andreyev A N, Huyse M, Van Duppen P, et al. A triplet of differently shaped spin-zero states in the atomic nucleus 186Pb. Nature, 2000, 405: 430–433

    Article  ADS  Google Scholar 

  4. Gamow G. Zur quantentheorie des atomkernes. Zeitschrift für Phys A, 1928, 51(3–4): 204–212

    Article  ADS  Google Scholar 

  5. Buck B, Merchant A C, Perez S M. Half-lives of favored alpha decays from nuclear ground states. Atom Data Nucl Data Tables, 1993, 54(1): 53–73

    Article  ADS  Google Scholar 

  6. Ren Z Z, Xu C, Wang Y Q, et al. Unfavored alpha-decays of nuclei in cluster model. Nucl Phys A, 2004, 738: 318–322

    Article  ADS  Google Scholar 

  7. Xu C, Ren Z Z. Favored α-decays of medium mass nuclei in density-dependent cluster model. Nucl Phys A, 2005, 760(3–4): 303–316

    Article  ADS  Google Scholar 

  8. Zhang H F, Zuo W, Li J Q, et al. α decay half-lives of new superheavy nuclei within a generalized liquid drop model. Phys Rev C, 2006, 74(1): 017304

    Article  ADS  Google Scholar 

  9. Pei J C, Xu F R, Lin Z J, et al. α-decay calculations of heavy and superheavy nuclei using effective mean-field potentials. Phys Rev C, 2007, 76(4): 044326

    Article  ADS  Google Scholar 

  10. Zhang D D, Ma Z Y, Chen B Q, et al. α-decay half-lives of superheavy elements with the Dirac-Brueckner-Hartree-Fock (DBHF) nucleon effective interaction. Phys Rev C, 2010, 81(4): 044319

    Article  ADS  Google Scholar 

  11. Freer M, Casarejos E, Achouri L, et al. α:2n:α molecular band in 10Be. Phys Rev Lett, 2006, 96(4): 042501

    Article  ADS  Google Scholar 

  12. Bromley D A, Kuehner J A, Almqvist E. Resonant elastic scattering of 12C by carbon. Phys Rev Lett, 1960, 4(7): 365–367

    Article  ADS  Google Scholar 

  13. Greenwood L R, Segel R E, Raghunathan K, et al. 12C(12C, α)20Ne excitation functions and angular distributions. Phys Rev C, 1975, 12: 156–178

    Article  ADS  Google Scholar 

  14. Ledoux R J, Ordonez C E, Bechara M J, et al. Selective alpha particle decay of 12C+12C resonances to excited 20Ne rotational bands observed in the 12C(12C, α)20Ne reaction. Phys Rev C, 1984, 30(3): 866–877

    Article  ADS  Google Scholar 

  15. Fletcher N R, Fox J D, KeKelis G J, et al. Resonant structures in the 12C(12C, 8Be)16O reaction, E c.m.=9 to 20MeV. Phys Rev C, 1976, 13(3): 1173–1179

    Article  ADS  Google Scholar 

  16. James D R, Fletcher N R. Excitation functions and Legendre analysis for 12C(12C, 8Be)16O(g.s.) reaction. Phys Rev C, 1978, 17(6): 2248–2252

    Article  ADS  Google Scholar 

  17. Fulton B R, Bennett S J, Freer M, et al. 16O+8Be breakup of 24Mg. Phys Lett B, 1989, 232(1): 56–60

    Article  ADS  Google Scholar 

  18. Pople J S, Clarke N M, Fulton B R, et al. The breakup of 24Mg into 16O and 8Be. Zeitschrift für Phys A, 1994, 349(3–4): 349–350

    ADS  Google Scholar 

  19. Murgatroyd J T, Pople J S, Clarke N M, et al. 16O+8Be breakup of 24Mg via the 12C(20Ne, 16O8Be)8Be and 12C(24Mg, 16O8Be)12C reactions. Phys Rev C, 1998, 58(3): 1569–1575

    Article  ADS  Google Scholar 

  20. Freer M, Clarke N M, Fulton B R, et al. 12C+12C and 16O+8Be decay of 24Mg states excited in the 12C(16O, 24Mg)α reaction. Phys Rev C, 1998, 57(3): 1277–1289

    Article  ADS  Google Scholar 

  21. Freer M, Murgatroyd J T, Singer S M, et al. 12C+12C and 16O+8Be decay of 24Mg states populated in the 12C(20Ne, 24Mg*)8Be reaction. Phys Rev C, 2001, 63(3): 034317

    Article  ADS  Google Scholar 

  22. Cosman E R, Ledoux R, Lazzarini A J. 12C+12C intermediate structures correlated among elastic and reaction channels. Phys Rev C, 1980, 21(5): 2111–2114

    Article  ADS  Google Scholar 

  23. Ledoux R J, Bechara M J, Ordonez C E, et al. 12C+12C elastic scattering excitation functions and phase shift analysis. Phys Rev C, 1983, 27(3): 1103–1116

    Article  ADS  Google Scholar 

  24. Costanzo E, Lattuada M, Romano S, et al. Excitation of 24Mg states through the interaction of 85 MeV 16O ions with 12C and 24Mg targets. Phys Rev C, 1991, 44(1): 111–118

    Article  ADS  Google Scholar 

  25. Fulton B R, Bennett S J, Murgatroyd J T, et al. Resonances in 24Mg revealed in the 12C(20Ne, 24Mg)8Be reaction. J Phys G-Nucl Part Phys, 1994, 20(1): 151–158

    Article  ADS  Google Scholar 

  26. Curtis N, Clarke N M, Fultonet B R, et al. Association of the 12C+12C breakup states in 24Mg with the quasimolecular resonances. Phys Rev C, 1995, 51(3): 1554–1557

    Article  ADS  Google Scholar 

  27. Wuosmaa A H, Betts R R, Back B B, et al. Evidence for alpha-particle chain configurations in 24Mg. Phys Rev Lett, 1992, 68(9): 1295–1298

    Article  ADS  Google Scholar 

  28. Leander G, Larsson S E. Potential-energy surfaces for the doubly even N = Z nuclei. Nucl Phys A, 1975, 239(1): 93–113

    Article  ADS  Google Scholar 

  29. Åberg S, Jönsson L O. Clustering aspects of nuclei with octupole and superdeformation. Zeitschrift für Phys A, 1994, 349(3–4): 205–211

    ADS  Google Scholar 

  30. Marsh S, Rae W D M. The structure of 24Mg using the cranked cluster model. Phys Lett B, 1986, 180(3): 185–190

    Article  ADS  Google Scholar 

  31. Flocard H, Heenen P H, Krieger S J, et al. Configuration space, cranked Hartree-Fock calculations for the nuclei 16O, 24Mg and 32S. Prog Theor Phys, 1984, 72(5): 1000–1016

    Article  ADS  Google Scholar 

  32. Xu C, Qi C, Liotta R J, et al. Molecular structure of highly excited resonant states in 24Mg and the corresponding 16O+8Be and 12C+12C decays. Phys Rev C, 2010, 81(5): 054319

    Article  ADS  Google Scholar 

  33. Descouvemont P, Baye D. The α+20Ne cluster structure of 24Mg in a microscopic three-cluster model. Nucl Phys A, 1987, 475(2): 219–232

    Article  ADS  Google Scholar 

  34. Descouvemont P, Baye D. Distortion effects in a microscopic 16O+2α description of 24Mg. Phys Lett B, 1989, 228(1): 6–10

    Article  ADS  Google Scholar 

  35. Kato K. Cluster structure in the highly-excited states of 24Mg. Prog Theor Phys, 1986, 76(1): 75–92

    Article  ADS  Google Scholar 

  36. Buck B, Hopking P D B, Merchant A C. A 12C+12C cluster model of 24Mg. Nucl Phys A, 1990, 513(1): 75–114

    Article  ADS  Google Scholar 

  37. Chepurnov V A. Average field of neutron and proton shells with N > 126 and Z > 82. Yad Fiz, 1967, 6: 955–960

    Google Scholar 

  38. Xu F R, Pei J C. Mean-field cluster potentials for various cluster decays. Phys Lett B, 2006, 642(4): 322–325; Qi C, Du R Z, Gao Y, et al. Theoretical studies of proton capture reactions in A ∼ 25 proton-rich nuclei. Sci China Ser G-Phys Mech Astron, 2009, 52(10): 1464–1470

    Article  ADS  Google Scholar 

  39. Mohr P. α-nucleus potentials, α-decay half-lives, and shell closures for superheavy nuclei. Phys Rev C, 2006, 73(3): 031301 (R)

    Article  ADS  Google Scholar 

  40. Hodgson P E, Běták E. Cluster emission, transfer and capture in nuclear reactions. Phys Rep, 2003, 374(1): 1–89

    Article  ADS  Google Scholar 

  41. Firestone R B. Nuclear data sheets for A = 24. Nucl Data Sheets, 2007, 108(11): 2319–2392

    Article  ADS  Google Scholar 

  42. Abegg R, Davis C A. 24Mg states observed via 20Ne(α, α0)20Ne. Phys Rev C, 1991, 43(6): 2523–2540

    Article  ADS  Google Scholar 

  43. Fifield L K, Zurmühle R W, Balamuth D P. High-Spin States in the Continuum. II. 24Mg. Phys Rev C, 1973, 8(6): 2217–2231

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FuRong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Xu, C., Liotta, R.J. et al. Alpha-particle decays from excited states in 24Mg. Sci. China Phys. Mech. Astron. 54 (Suppl 1), 130–135 (2011). https://doi.org/10.1007/s11433-011-4420-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4420-z

Keywords

Navigation