Skip to main content
Log in

Effects of the injector geometry on a sonic jet into a supersonic crossflow

  • Article
  • Special Topic: Fluid Mechanics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Large-eddy simulation of a sonic injection from circular and elliptic injectors into a supersonic crossflow has been performed. The effects of injector geometry on various fundamental mechanisms dictating the intricate flow phenomena including shock/jet interaction, jet shear layer vortices and their evolution, jet penetration properties and the relevant turbulence behaviors have been studied systematically. As a jet issuing transversely into a supersonic crossflow, salient three-dimensional shock and vortical structures, such as bow, separation and barrel shocks, Mach disk, horseshoe vortex, jet shear layer vortices and vortex pairs, are induced. The shock structures exhibit considerable deformations in the circular injection, while their fluctuation becomes smaller in the elliptic injection. The jet shear layer vortices are generated at the jet periphery and their evolution characteristics are analyzed through tracing the centroid of these coherent structures. It is found that the jet from the elliptic injector spreads rapidly in the spanwise direction but suffers a reduction in the transverse penetration compared to the circular injection case. The turbulent fluctuations are amplified because of the jet/crossflow interaction. The vertical Reynolds normal stress is enhanced in the downstream of the jet because of the upwash velocity induced by the counter-rotating vortex pair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gruber M R, Nejad A S, Chen T H, et al. Mixing and penetration studies of sonic jets in a Mach 2 freestream. J Propul Power, 1995, 11: 315–323

    Article  Google Scholar 

  2. Ben-Yakar A, Mungal M G, Hanson R K. Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Phys Fluids, 2006, 18: 026101

    Article  ADS  Google Scholar 

  3. Kawai S, Lele S K. Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J, 2010, 48: 2063–2083

    Article  ADS  Google Scholar 

  4. Seiner J M, Dash S M, Kenzakowski D C. Historical survey on enhanced mixing in scramjet engines. J Propul Power, 2001, 17: 1273–1286

    Article  Google Scholar 

  5. Karagozian A R. Transverse jets and their control. Prog Energy Combust, 2010, 36: 531–553

    Article  Google Scholar 

  6. Schetz J A, Billig F S. Penetration of gaseous jets injected into a supersonic stream. J Spacecraft, 1966, 3: 1658–1665

    Article  Google Scholar 

  7. Everett D E, Woodmansee MA, Dutton J C, et al. Wall pressure measurements for a sonic jet injected transversely into a supersonic crossflow. J Propul Power, 1998, 14: 861–868

    Article  Google Scholar 

  8. Gruber M R, Goss L P. Surface pressure measurements in supersonic transverse injection flowfields. J Propul Power, 1999, 15: 633–641

    Article  Google Scholar 

  9. Papamoschou D, Hubbard D G. Visual observations of supersonic transverse jets. Exp Fluids, 1993, 14: 468–476

    Article  Google Scholar 

  10. Santiago J G, Dutton J C. Velocity measurements of a jet injected into a supersonic crossflow. J Propul Power, 1997, 13: 264–273

    Article  Google Scholar 

  11. Gruber M R, Nejad A S, Chen T H, et al. Bow shock/jet interaction in compressible transverse injection flowfields. AIAA J, 1996, 34: 2191–2193

    Article  ADS  Google Scholar 

  12. VanLerberghe W M, Santiago J G, Dutton J C, et al. Mixing of a sonic transverse jet injected into a supersonic flow. AIAA J, 2000, 38: 470–479

    Article  ADS  Google Scholar 

  13. Chenault C F, Beran P S, Bowersox R D W. Numerical investigation of supersonic injection using a Reynolds-stress turbulence model. AIAA J, 1999, 37: 1257–1269

    Article  ADS  Google Scholar 

  14. Sriram A T, Mathew J. Numerical simulation of transverse injection of cricular jets into turbulent supersonic streams. J Propul Power, 2008, 24: 45–54

    Article  Google Scholar 

  15. Viti V, Neel R, Schetz J A. Detailed flow physics of the supersonic jet interaction flow field. Phys Fluids, 2009, 21: 046101

    Article  ADS  Google Scholar 

  16. Gruber M R, Nejad A S, Chen T H, et al. Compressibility effects in supersonic transverse injection flowfields. Phys Fluids, 1997, 9: 1448–1461

    Article  ADS  Google Scholar 

  17. Megerian S, Davitian J, Alves L S de B, et al. Transverse-jet shear-layer instabilities. Part 1. Experimental studies. J Fluid Mech, 2007, 593: 93–129

    Article  ADS  MATH  Google Scholar 

  18. Ben-Yakar A, Hanson R K. Ultra-fast-framing schlieren system for studies of the time evolution of jets in supersonic crossflows. Exp Fluids, 2002, 32: 652–666

    Google Scholar 

  19. Muppidi S, Mahesh K. Direct numerical simulation of round turbulent jets in crossflow. J Fluid Mech, 2007, 574: 59–84

    Article  ADS  MATH  Google Scholar 

  20. Gutmark E J, Ibrahim I M, Murugappan S. Circular and noncircular subsonic jets in cross flow. Phys Fluids, 2008, 20: 075110

    Article  ADS  Google Scholar 

  21. Simpson R L. Junction flows. Annu Rev Fluid Mech, 2001, 33: 415–443

    Article  ADS  Google Scholar 

  22. Lu X Y, Wang SW, Sung H G, et al. Large-eddy simulations of turbulent swirling flows injected into a dump chamber. J Fluid Mech, 2005, 527: 171–195

    Article  ADS  MATH  Google Scholar 

  23. Xu C Y, Chen L W, Lu X Y. Large-eddy simulation of the compressible flow past a wavy cylinder. J Fluid Mech, 2010, 665: 238–273

    Article  ADS  MATH  Google Scholar 

  24. Chen LW, Xu C Y, Lu X Y. Numerical investigation of the compressible flow past an aerofoil. J Fluid Mech, 2010, 643: 97–126

    Article  ADS  MATH  Google Scholar 

  25. Chen L W, Wang G L, Lu X Y. Numerical investigation of a jet from a blunt body opposing a supersonic flow. J Fluid Mech, 2011, 684: 85–110

    Article  ADS  MATH  Google Scholar 

  26. Hill D J, Pantano C, Pullin D I. Large-eddy simulation and multiscale modeling of a Richtmyer-Meshkov instability with reshock. J Fluid Mech, 2006, 557: 29–61

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Génin F, Menon S. Dynamics of sonic jet injection into supersonic cross-flow. J Turbul, 2010, 11: 1–30

    Article  Google Scholar 

  28. Gruber M R, Nejad A S, Chen T H, et al. Transverse injection from circular and elliptic nozzles into a supersonic crossflow. J Propul Power, 2000, 16: 449–457

    Article  Google Scholar 

  29. New T H, Lim T T, Luo S C. Elliptic jets in cross-flow. J Fluid Mech, 2003, 494: 119–140

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Liscinsky D S, True B, Holdeman J D. Crossflow mixing of noncircular jets. J Propul Power, 1996, 12: 225–230

    Article  Google Scholar 

  31. Lim T T, New T H, Luo S C. Scaling of trajectories of elliptic jets in crossflow. AIAA J, 2006, 44: 3157–3160

    Article  ADS  Google Scholar 

  32. Peterson D M, Candler G V. Hybrid Reynolds-averaged and large-eddy simulation of normal injection into a supersonic crossflow. J Propul Power, 2010, 26: 533–544

    Article  Google Scholar 

  33. Bodony D J, Lele S K. On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets. Phys Fluids, 2005, 17: 085103

    Article  ADS  Google Scholar 

  34. Xu C Y, Chen L W, Lu X Y. Effect of Mach number on transonic flow past a circular cylinder. Chin Sci Bull, 2009, 54: 1886–1893

    Article  MATH  Google Scholar 

  35. Xu C Y, Chen L W, Lu X Y. Numerical simulation of shock wave and turbulence interaction over a circular cylinder. Mod Phys Lett B, 2009, 23: 233–236

    Article  ADS  Google Scholar 

  36. Yuan L L, Street R L, Ferziger J H. Large-eddy simulations of a round jet in crossflow. J Fluid Mech, 1999, 379: 71–104

    Article  ADS  MATH  Google Scholar 

  37. Marzouk Y M, Ghoniem A F. Vorticity structure and evolution in a transverse jet. J Fluid Mech, 2007, 575: 267–305

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiYun Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Chen, L. & Lu, X. Effects of the injector geometry on a sonic jet into a supersonic crossflow. Sci. China Phys. Mech. Astron. 56, 366–377 (2013). https://doi.org/10.1007/s11433-012-4984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4984-2

Keywords

Navigation