Skip to main content
Log in

A new look on wetting models: continuum analysis

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In this study, we considered the wetting phenomenon on a general substrate from a new viewpoint of continuum mechanics. The analyses first show how the Wenzel and the Cassie models deviate the practical results in some special substrates, and then elucidate the mechanism of the triple contact line (TCL) moving. Based upon variational theory of the total free functional dealing with the movable boundary condition, we show that the macroscopic contact angle (MCA) expression is the corresponding transversality condition. It manifests that the MCA depends only on the chemical and geometric property at the TCL, and is not affected by the gravity of the droplet and the contact area beneath the liquid. Our continuum model also shows the exploration of the pinning effect on a sharp wedge or the interface between two different phases. This investigation will help designing super-hydrophobic materials for novel micro-fluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Young T. An essay on the cohesion of fluids. Trans R Soc London, 1805, 95:65–87

    Article  Google Scholar 

  2. de Gennes P G. Wetting: statics and dynamics. Rev Mod Phys, 1985, 57:827–863

    Article  ADS  Google Scholar 

  3. Quéré D. Rough ideas on wetting. Physica A, 2002, 313:32–46

    Article  ADS  Google Scholar 

  4. Yuan Q Z, Zhao Y P. Topology-dominated dynamic wetting of the precursor chain in a hydrophilic interior corner. Proc R Soc A, 2012, 468:310–322

    Article  ADS  Google Scholar 

  5. Ceihuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot, 1997, 79:667–677

    Article  Google Scholar 

  6. Hu D L, Chan B, Bush J W. The hydrodynamics of water strider locomotion. Nature, 2004, 424:663–666

    Article  ADS  Google Scholar 

  7. Feng X Q, Gao X F, Wu Z N, et al. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. Langmuir, 2007, 23:4892–4896

    Article  Google Scholar 

  8. Liu J L, Feng X Q. Buoyant force and sinking conditions of a hydrophobic thin rod floating on water. Phys Rev E, 2007, 76:066103

    Article  MathSciNet  ADS  Google Scholar 

  9. Shi F, Niu J, Liu J L, et al. Towards understanding why superhydrophobic coating is needed by water striders. Adv Mater, 2007, 19:2257–2261

    Article  Google Scholar 

  10. Wu C W, Kong X Q, Wu D. Micronanostructures of the scales on a mosquito’s legs and their role in support. Phys Rev E, 2007, 76: 017301

    Article  ADS  Google Scholar 

  11. Parker A R, Lawrence C R. Water capture by a desert beetle. Nature, 2001, 414: 33–34

    Article  ADS  Google Scholar 

  12. Zhai L, Cebeci F C, Cohen R E, et al. Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett, 2004, 4:1349–1353

    Article  ADS  Google Scholar 

  13. Lau K K S, Bico J, Teo K B K, et al. Superhydrophobic carbon nanotube forests. Nano Lett, 2003, 3:1701–1705

    Article  ADS  Google Scholar 

  14. Hosono E, Fujihara S, Honma I, et al. Superhydrophobic perpendicular nano-pin film by the bottom-up process. J Am Chem Soc, 2005, 127:13458–13459

    Article  Google Scholar 

  15. Yoshimitsu Z, Nakajima A, Watanabe T, et al. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir, 2002, 18:5818–5822

    Article  Google Scholar 

  16. Onda T, Shibuichi S, Satoh N, et al. Super-water-repellent fractal surfaces. Langmuir, 1996, 12:2125–2127

    Article  Google Scholar 

  17. Bico J, Thiele U, Quéré D. Wetting of textured surfaces. Colloid Surf A-Physiochem Eng Asp, 2002, 206:41–46

    Article  Google Scholar 

  18. Patankar N A. On the modeling of hydrophobic contact angles on rough surfaces. Langmuir, 2003, 19:1249–1253

    Article  Google Scholar 

  19. Lee J, He B, Patankar N A. A roughness-based wettability switching membrane device for hydrophobic surfaces. J Micromech Microeng, 2005, 15:591–600

    Article  Google Scholar 

  20. Liu J L, Xia R, Li B W, et al. Directional motion of droplets in a conical tube or on a conical fibre. Chin Phys Lett, 2007, 24:3210–3213

    Article  ADS  Google Scholar 

  21. Blossey R. Self-cleaning surface: Virtual realities. Nat Mater, 2003, 2:301–306

    Article  ADS  Google Scholar 

  22. Dai W, Zhao Y P. An electrowetting model for rough surfaces under low voltage. J Adhes Sci Tech, 2008, 22:217–229

    Article  Google Scholar 

  23. Wenzel R N. Resistance of solid surfaces to wetting by water. Ind Eng Chem, 1936, 28:988–994

    Article  Google Scholar 

  24. Cassie A B D, Baxter S T. Wettability of porous surfaces. Faraday Soc, 1944, 40:546–551

    Article  Google Scholar 

  25. Pease D C. The significance of the contact angle in relation to the solid surface. J Phys Chem, 1945, 49:107–110

    Article  Google Scholar 

  26. Bartell F E, Shepard J W. Surface roughness as related to hysteresis of contact angles. II. The systems paraffin-3 molar calcium chloride solution-air and paraffin-glycerol-air. J Phys Chem, 1953, 57:455–458

    Article  Google Scholar 

  27. Extrand C W. Contact angles and hysteresis on surfaces with chemically heterogeneous islands. Langmuir, 2003, 19:3793–3796

    Article  Google Scholar 

  28. Gao L, McCarthy T J. How Wenzel and Cassie were wrong. Langmuir, 2007, 23:3762–3765

    Article  Google Scholar 

  29. Gao L, McCarthy T J. An attempt to correct the faulty intuition. Langmuir, 2009, 25:7249–7255

    Article  Google Scholar 

  30. Liu J L, Mei Y, Xia R. A new wetting mechanism based upon TCL pinning. Langmuir, 2011, 27:196–200

    Article  Google Scholar 

  31. McHale G. Cassie and Wenzel: were they really so wrong? Langmuir, 2007, 23:8200–8205

    Article  Google Scholar 

  32. Nosonovsky M. On the range of applicability of the Wenzel and Cassie equations. Langmuir, 2007, 23:9919–9920

    Article  Google Scholar 

  33. Panchagnula M V, Vedantam S. Comment on how Wenzel and Cassie were wrong by Gao and McCarthy. Langmuir, 2007, 23:13242

    Article  Google Scholar 

  34. Marmur A, Bittoun E. When Wenzel and Cassie are right: Reconciling local and global considerations. Langmuir, 2009, 25:1277–1281

    Article  Google Scholar 

  35. Swain P S, Lipowsky R. Contact angles on heterogeneous surfaces: a new look at Cassie’s and Wenzel’s laws. Langmuir, 1998, 14:6772–6780

    Article  Google Scholar 

  36. Bormashenko E. A variational approach to wetting of composite surfaces: is wetting of composite surfaces a one-dimensional or two-dimensional phenomenon? Langmuir, 2009, 25:10451–10454

    Article  Google Scholar 

  37. Bormashenko E. Young, Boruvka-Neumann, Wenzel and Cassie-Baxter equations as the transversality conditions for the variational problem of wetting. Colloid Surf A-Physiochem Eng Asp, 2009, 345:163–165

    Article  Google Scholar 

  38. Yu Y S, Zhao Y P. Deformation of PDMS membrane and microcantilever by a water droplet: comparison between Mooney-Rivlin and linear elastic constitutive models. J Colloid Inter face Sci, 332:467–476

  39. Koch K, Bohn H F, Barthlott W. Hierarchically sculptured plant surfaces and superhydrophobicity. Langmuir, 2009, 25:14116–14120

    Article  Google Scholar 

  40. Quéré D. Surface wetting: Model droplets. Nat Mater, 2004, 3: 79–80

    Article  Google Scholar 

  41. Yuan Q Z, Zhao Y P. Precursor film in dynamic wetting, electrowetting, and electro-elasto-capillarity. Phys Rev Lett, 2010, 104: 246101

    Article  ADS  Google Scholar 

  42. Calabri L, Pugno N, Menozzi C, Valeri S. AFM nanoindentation: Tip shape and tip radius of curvature effect on the hardness measurement. J Phys-Condens Matter, 2008, 20: 474208

    Article  ADS  Google Scholar 

  43. Wolansky G, Marmur A. Apparent contact angles on rough surfaces: The Wenzel equation revisited. Colloid Surf A-Physiochem Eng Asp, 1999, 156:381–388

    Article  Google Scholar 

  44. Brandon S, Haimovich N, Yeger E, et al. Partial wetting of chemically patterned surfaces: the effect of drop size. J Colloid Interface Sci, 2003, 263:237–243

    Article  Google Scholar 

  45. Yu X, Wang Z, Jiang Y, et al. Surface gradient material: from superhydrophobicity to superhydrophilicity. Langmuir, 2006, 22:4483–4486

    Article  Google Scholar 

  46. Lipowsky R, Lenz P, Swain P S. Wetting and dewetting of structured and imprinted surfaces. Colloid Surf A-Physiochem Eng Asp, 2000, 161:3–22

    Article  Google Scholar 

  47. Li Y, Wang J, Yin Y, et al. Division and microstructure feature in the interface transition zone of Fe3Al/Q235 diffusion bonding. J Colloid Interface Sci, 2005, 288:521–525

    Article  Google Scholar 

  48. Yu Y, Wu Q, Zhang K, et al. Effect of triple-phase contact line on contact angle hysteresis. Sci China-Phys Mech Astron, 2012, 55:1045–1050

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianLin Liu.

Additional information

Recommended by ZHAO YaPu (Associated Editor)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Xia, R. & Zhou, X. A new look on wetting models: continuum analysis. Sci. China Phys. Mech. Astron. 55, 2158–2166 (2012). https://doi.org/10.1007/s11433-012-4895-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4895-2

Keywords

Navigation