Skip to main content
Log in

A modified simplified coherent potential approximation model of band gap energy of III–V ternary alloys

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Based on the modification of the simplified coherent potential approximation (SCPA), a model is developed to calculate the composition dependence of the band gap energy of III-V ternary alloys with the same anion. The derived equation is used to fit the experimental band gap energy of In x Al1−x N, In x Ga1−x N and Al x Ga1−x N with x from 0 to 1. It is found that the fitting results are better than those done by using SCPA. The fitting results are also better than those obtained by using the formula with a small bowing coefficient, especially for In x Al1−x N. In addition, our model can also be used to describe the composition dependence of band gap energy of other III-V ternary alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ban S L, Hasbun J E. Interface polarons in a realistic heterojunction potential. Eur Phys J B, 1999, 8: 453–461

    Article  ADS  Google Scholar 

  2. Porod W, Ferry D K. Modification of the virtual-crystal approximation for ternary III-V compounds. Phys Rev B, 1983, 27: 2587–2589

    Article  ADS  Google Scholar 

  3. Lee S J, Chung H S, Nahm K, et al. Band structure of ternary-compound semiconductors using a modified tight-binding method. Phys Rev B, 1990, 42: 1452–1454

    Article  ADS  Google Scholar 

  4. Wu J, Walukiewicz W, Yu K M, et al. Small band gap bowing in In-GaN alloys. Appl Phys Lett, 2002, 80: 4741–4743

    Article  ADS  Google Scholar 

  5. Alevli M, Durkaya G, Fenwick W, et al. Characterization of InN layers grown by high pressure chemical vapor deposition. Appl Phys Lett, 2006, 89: 112119

    Article  ADS  Google Scholar 

  6. Wu J, Walukiewicz W, Yu K M, et al. Universal bandgap bowing in group-III nitride alloys. Solid State Commun, 2003, 127: 411–414

    Article  ADS  Google Scholar 

  7. Kim K S, Saxler A, Kung P, et al. Determination of the band-gap energy of AlInN grown by metal-organic chemical-vapor deposition. Appl Phys Lett, 1997, 71: 800–802

    Article  ADS  Google Scholar 

  8. Roqana I S, Lorenz K, Donnell K P O, et al. Blue cathodoluminescence from thulium implanted AlGaN and InAlN. Superlattices Microstruct, 2006, 40: 445–451

    Article  ADS  Google Scholar 

  9. Kityk I V, Małachowskiet M J. Electronic structure and X-ray photoelectron spectroscopy of wurtzite GaAlN. Cryst Res Technol, 2001, 36: 183–190

    Article  Google Scholar 

  10. Pugh S K, Dugdale D J, Brand S, et al. Band-gap and k.p. parameters for GaAlN and GaInN alloys. Jpn J Appl Phys, 1999, 86: 3768–3772

    Google Scholar 

  11. Donnell K P O, Fernandez-Torrente I, Edwards P R, et al. The composition dependence of the InGaN bandgap. J Cryst Growth, 2004, 269: 100–105

    Article  Google Scholar 

  12. Shan W, Walukiewicz W, Haller E E, et al. Optical properties of In-GaN alloys grown by metalorganic chemical vapor deposition. Jpn J Appl Phys, 1998, 84: 4452–4458

    Google Scholar 

  13. Ishitani Y, Fujiwara M, Shinada T, et al. Alloy composition fluctuation and band edge energy structure of In-rich InGaN layers investigated by systematic spectroscopy. Phys Stat Sol (c), 2007, 4: 2428–2432

    Article  Google Scholar 

  14. Kuykendall T, Ulrich P, Aloni S, et al. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat Mater, 2007, 6: 951–956

    Article  ADS  Google Scholar 

  15. Specht P, Ho J C, Xu X, et al. Zincblende and wurtzite phases in InN epilayers and their respective band transitions. J Cryst Growth, 2006, 288: 225–229

    Article  ADS  Google Scholar 

  16. Agrawal B, Agrawal K S, Yadav P S, et al. Ab inito calculation of electronic properties of GaInN alloys. J Phys-Condens Matter, 1997, 9: 1763–1775

    Article  ADS  Google Scholar 

  17. Tsen K T, Liang W, Ferry D K, et al. Optical studies of carrier dynamics and non-equilibrium optical phonons in nitride-based wide bandgap semiconductors. Superlattices Microstruct, 2005, 38: 77–114

    Article  ADS  Google Scholar 

  18. Perry P B, Rutz R F. The optical absorption edge of single-crystal AlN prepared by a closed-spaced vapor process. Appl Phys Lett, 1978, 33: 319–321

    Article  ADS  Google Scholar 

  19. Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III–V compound semiconductors and their alloys. J Appl Phys, 2001, 89: 5815–5875

    Article  ADS  Google Scholar 

  20. Guo Q, Ogawa H, Yoshida A. Growth of AlxIn1−x N single crystal films by microwave-excited metalorganic vapor phase epitaxy. J Cryst Growth, 1995, 146: 462–466

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, C., Zhang, R., Liu, B. et al. A modified simplified coherent potential approximation model of band gap energy of III–V ternary alloys. Sci. China Phys. Mech. Astron. 55, 400–403 (2012). https://doi.org/10.1007/s11433-012-4636-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4636-6

Keywords

Navigation