Skip to main content
Log in

A first-principles study of site occupancy and interfacial energetics of an H-doped TiAl-Ti3Al alloy

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We investigate the site occupancy and the interfacial energetics of TiAl-Ti3Al binary-phase system with H using a first-principles method. H energetically prefers to occupy the Ti-rich octahedral interstitial site because H prefers to bond with Ti rather than with Al. The occupancy tendency of H in the binary phase TiAl-Ti3Al alloy from high to low is α 2 -Ti3Al to γ/α 2 interface and γ-TiAl, because the decrease of the Ti local concentration is in the same order. We demonstrate that H can largely affect the mechanical properties of the TiAl-Ti3Al system. On the one hand, H at the interface reduces the interface energy with the H2 molecule as a reference, implying the TiAl/Ti3Al interface is stabilized. On the other hand, the ratio between the cleavage energy and the unstable stacking fault energy decreases after H-doping, indicating H will reduce the ductility of the TiAl/Ti3Al interface. Consequently, the mechanical property variation of TiAl alloy due to the presence of H not only depends on the amount of TiAl/Ti3Al interfaces but also is related to the H concentration in the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim Y W, Froes F H. Physical metallurgy of titanium aluminides. In: Whang S H, Liu C T, Pope D P, et al. eds. High-Temperature Aluminides and Intermetallics. Warrendale: TMS, 1990

    Google Scholar 

  2. Menand A, Zapolsky-Tatarenko H, Nérac-Partaix A. Atom-probe investigations of TiAl alloys. Mater Sci Eng A, 1998, 250: 55–64.

    Article  Google Scholar 

  3. Lipsitt H A, Shechtman D, Schafrik R. The deformation and fracture of TiAl at elevated temperatures. Metall Trans A, 1975, 6A: 1991–1996

    ADS  Google Scholar 

  4. Sastry S M L, Lipsitt H A. Fatigue deformation of TiAl base alloys. Metall Trans, 1997, 8A: 299–308

    Google Scholar 

  5. Appel F, Wagner R. Microstructure and deformation of two-phase γ-titanium aluminides. Mater Sci Eng R, 1998, 22: 187–268

    Article  Google Scholar 

  6. Kim Y W, Dimiduk D M. Progress in the understanding of gamma titanium aluminides. J Met, 1991, 43: 40–47

    Google Scholar 

  7. Yamaguchi M, Inui H, Ito K. High-temperature structural intermetallics. Acta Mater, 2000, 48: 307–322

    Article  Google Scholar 

  8. Zhang Y, Lu G H, Hu X L, et al. First-principles computational tensile test on a Na-segregated Al grain boundary with an Si additive and an intergranular embrittlement suppression mechanism. J Phys: Condens Matter, 2007, 19: 456225

    Article  ADS  Google Scholar 

  9. Lu G H, Deng S, Wang T, et al. Theoretical tensile strength of an Al grain boundary. Phys Rev B, 2004, 69: 134106

    Article  ADS  Google Scholar 

  10. Lu G H, Zhang Y, Deng S, et al. Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening. Phys Rev B, 2006, 73: 224115

    Article  ADS  Google Scholar 

  11. Zhang Y, Lu G H, Deng S, et al. First-principles study of the effects of segregated Ga on an Al grain boundary. J Phys: Condens Matter, 2006, 18: 5121–5128

    Article  ADS  Google Scholar 

  12. Zhang Y, Lu G H, Deng S, et al. Weakening of an aluminum grain boundary induced by sulfur segregation: A first-principles computational tensile test. Phys Rev B, 2007, 75: 174101

    Article  ADS  Google Scholar 

  13. Wang J S. Hydrogen induced embrittlement and the effect of the mobility of segregated atoms. In: Thompson A W, Moody N R, eds. Hydrogen Effects in Materials. Warrendale: TMS, 1996

    Google Scholar 

  14. Matejczyk D E, Rhodes C G. Second phase formation in γ-TiAl during high-pressure hydrogen charging. Scripta Metall Mater, 1990, 24: 1369–1373

    Article  Google Scholar 

  15. Gao K, Wang Y, Lin Z, et al. Fracture mechanism of TiAl intermetallics caused by hydride and atomic hydrogen. Sci China Ser E-Technol Sci, 1999, 42(5): 511–520

    Article  Google Scholar 

  16. Liu Y, Chen K Y, Zhang J H, et al. Electronic effects of oxygen and vanadium impurities in TiAl. J Phys: Condens Matter, 1997, 9: 9829–9843

    Article  ADS  Google Scholar 

  17. Dang H L, Wang C Y, Yu T. Light impurity effects on the electronic structure in TiAl. J Phys: Condens Matter, 2006, 18: 8803–8815

    Article  ADS  Google Scholar 

  18. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B, 1993, 47: 558–561

    Article  ADS  Google Scholar 

  19. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  ADS  Google Scholar 

  20. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B, 1990, 41: 7892–7895

    Article  ADS  Google Scholar 

  21. Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B, 1992, 46: 6671–6687

    Article  ADS  Google Scholar 

  22. Zhou H B, Wei Y, Liu Y L, et al. First-principles investigation of site preference and bonding properties of alloying element in TiAl with O impurity. Modell Simul Mater Sci Eng, 2010, 18: 015007

    Article  ADS  Google Scholar 

  23. Wei Y, Zhang Y, Lu G H, et al. Site preference and elastic properties of α 2-Ti3Al with oxygen impurity: A first-principles study. Int J Mod Phys B, 2010, 24: 2749–2755

    Article  ADS  MATH  Google Scholar 

  24. Pearson W B. A Handbook of Lattice Spacing and Structure of Metals and Alloys. Oxford: Pergamon, 1987

    Google Scholar 

  25. Inui H, Nakamura A, Oh M H, et al. High-resolution electron microscope study of lamellar boundaries in Ti-rich TiAl polysynthetically twinned crystals. Ultramicros, 1991, 39: 268–278

    Article  Google Scholar 

  26. Fischer F D, Waitz T, Scheu C, et al. Study of nanometer-scaled lamellar microstructure in a Ti-45Al-7.5Nb alloy-Experiments and modeling. Intermetallics, 2010, 18: 509–517

    Article  Google Scholar 

  27. Koizumi Y, Sugihara A, Tsuchiya H, et al. Selective dissolution of nanolamellar Ti-41at% Al alloy single crystals. Acta Mater, 2010, 58: 2876–2886

    Article  Google Scholar 

  28. Stull D R, Prophet H. JANAF Thermochemical Tables. 2nd ed. Washington D C: US National Bureau of Standards, 1971

    Google Scholar 

  29. Christensen M, Dudiy S, Wahnström G. First-principles simulations of metal-ceramic interface adhesion: Co/WC versus Co/TiC. Phys Rev B, 2002, 65: 045408

    Article  ADS  Google Scholar 

  30. Fu C L. Interfacial energies in two-phase TiAl-Ti3Al alloy. Scripta Mater, 1997, 37: 1453–1459

    Article  Google Scholar 

  31. Gong H R. Electronic structure and related properties of Pd/TiAl membranes. Intermetallics, 2009, 17: 562–567

    Article  Google Scholar 

  32. Vitek V. Intrinsic stacking faults in body-centred cubic crystals. Philos Mag, 1968, 18: 773–786

    Article  ADS  Google Scholar 

  33. Christian J W, Vitek V. Dislocations and stacking faults. Rep Prog Phys, 1970, 33: 307–411

    Article  ADS  Google Scholar 

  34. Duesbery M S, Vitek V. Plastic anisotropy in bcc transition metals. Acta Mater, 1998, 46: 1481–1492

    Article  Google Scholar 

  35. Rice J R. Dislocation nucleation from a crack tip: An analysis based on the Peierls concept. J Mech Phys Solids, 1992, 40: 239–271

    Article  ADS  Google Scholar 

  36. Fu C L. Electronic, elastic and fracture properties of trialuminide alloys: Al3Sc and Al3Ti. J Mater Res, 1990, 5: 971–979

    Article  ADS  Google Scholar 

  37. Rice J R, Thomson R. Ductile versus brittle behaviour of crystals. Philos Mag, 1974, 29: 73–97

    Article  ADS  Google Scholar 

  38. Wei Y, Zhou H B, Zhang Y, et al. First-principles investigation on shear deformation of a TiAl/Ti3Al interface and effects of oxygen. Intermetallics, in press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangHong Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Y., Zhang, Y., Lu, G. et al. A first-principles study of site occupancy and interfacial energetics of an H-doped TiAl-Ti3Al alloy. Sci. China Phys. Mech. Astron. 55, 228–234 (2012). https://doi.org/10.1007/s11433-011-4600-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4600-x

Keywords

Navigation