Skip to main content
Log in

Structure characterization, magnetic and photoluminescence properties of Mn doped ZnS nanocrystalline

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Wurzite ZnS:Mn nanorods are synthesized via a solvothermal method by using ethylenediamine and water as mixed solvent. The diameters of the nanorods increase and the lengths decrease with the Mn concentration. High resolution transmission electron microscopic images illustrate that a few cubic ZnS:Mn nanoparticles arise along with hexagonal nanorods on high Mn concentration. The samples set off yellow-orange emission at 590 nm, characteristic of 4T→6A1 transition of Mn2+ at Td symmetry in ZnS. Electron spin resonance spectrum of the nanorods shows that high Mn concentrations produce a broad envelope, whereas six-line hyperfine appears for lower Mn concentrations. These results together with the magnetization curves indicate that all the ZnS:Mn samples are paramagnetic even down to 4 K, which suggests that the ZnS:Mn is not suitable for dilute magnetic semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang M, Sun L, Fu X, et al. Synthesis and optical properties of ZnS:Cu(II) nanoparticles. Solid State Commun, 2000, 115(9): 493–496

    Article  ADS  Google Scholar 

  2. Bala P, Valko M, Boldiz E, et al. Properties and reactivity of Mn-doped ZnS nanoparticles. Mater Lett, 2002, 57(1): 188–191

    Article  Google Scholar 

  3. Nelkowski H, Pfützenreuter O, Schrittenlacher W. Comparison of luminescence and ESR-investigations in ZnS: Fe. J Liminsci, 1979, 20(4): 403–408

    Article  Google Scholar 

  4. Ghosh S C, Thanachayanont C, Dutta J. Studies on zinc sulphide nanoparticles for field emission devices. In: Proceedings of the First ECTI Annual Conference (ECTI-CON 2004), Pattaya, Thailand, 2004. 145–148

  5. Garlick J G F, Gibson A F. The luminescence of photo-conducting phosphors. J Opt Soc Am, 1949, 39(11): 935–940

    Article  ADS  Google Scholar 

  6. Tang W, Cameron D C. Electroluminescent zinc sulphide devices produced by sol-gel processing. Thin Solid Film, 1996, 280(1): 221–226

    Article  ADS  Google Scholar 

  7. Bredol M, Merikhi J. ZnS precipitation: Morphology control. J Mater Sci, 1998, 33(2): 471–476

    Article  Google Scholar 

  8. Falcony C, Garcia M, Ortiz A. Luminescent properties of ZnS:Mn films deposited by spray pyrolysis. J Appl Phys, 1992, 72: 1525–1527

    Article  ADS  Google Scholar 

  9. Bandaranayake R J, Lin J Y, Jiang H X. Synthesis and properties of Cd1−x MnxS diluted magnetic semiconductor ultrafine particles. J Magn Magn Mat, 1997, 169(3): 289–302

    Article  ADS  Google Scholar 

  10. Pearce C I, Pattrick, Richard A D, et al. Electrical and magnetic properties of sulfides. Sulfide Mineral Geochem, 2006, 61: 127–180

    Article  Google Scholar 

  11. Furdyna J K. Diluted magnetic semiconductors. J Appl Phys, 1988, 64: R29–R65

    Article  ADS  Google Scholar 

  12. Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281: 951–956

    Article  ADS  Google Scholar 

  13. Dietl T, Spalek J. Effect of fluctuations of magnetization on the bound magnetic polaron: Comparison with experiment. Phys ReV Lett, 1982, 48: 355–358

    Article  ADS  Google Scholar 

  14. Taguchi S, Ishizumi A, Tayagaki T, et al. Mn-Mn couplings in Mn-doped CdS nanocrystals studied by magnetic circular dichroism spectroscopy. Appl Phys Lett, 2009, 94: 173101

    Article  ADS  Google Scholar 

  15. Nielsen K-W, Philipp J B, Opel M A, et al. Ferromagnetism in Mn-doped ZnO due to impurity bands. Superlattices Microstruct, 2005, 37: 327–332

    Article  ADS  Google Scholar 

  16. Sandratskii L M, Bruno P. Exchange interactions in ZnMeO (Me=Mn,Fe,Co,Ni): Calculations using the frozen-magnon technique. Phys Rev B, 2006, 73: 045203–045208

    Article  ADS  Google Scholar 

  17. Hu P A, Liu Y Q, Fu L, et al. Self-assembled growth of ZnS nanobelt networks. J Phys Chem B, 2004, 108: 936–938

    Article  Google Scholar 

  18. Lambe J, Kikuchi C. Paramagnetic resonance of CdTe: Mn and CdS: Mn. Phys Rev, 1960, 119: 1256–1260

    Article  ADS  Google Scholar 

  19. Ishikawa Y. ESR spectra of exchange-coupled Mn2+ ions in ZnS and CdS. J Phys Soc Jpn, 1966, 21: 1473–1481

    Article  ADS  Google Scholar 

  20. Hofmann D M, Hofstaetter A, Leib, U, et al. EPR and ENDOR investigations on CdS: Mn nanocrystals. J Cryst Growth, 1998, 184(2): 383–387

    Article  ADS  Google Scholar 

  21. Brieler F J, Grundmann P, Fröba M, et al. Formation of Zn1−x MnxS nanowires within mesoporous silica of different pore sizes. J Am Chem Soc, 2004, 126(3): 797–807

    Article  Google Scholar 

  22. Samelson H, Lempicki A. Fluorescence of Cubic ZnS:Cl, Crystals. Phys Rev, 1962, 125(3): 901–909

    Article  ADS  Google Scholar 

  23. Sooklal K, Cullum B S, Angel S M, et al. Photophysical properties of ZnS nanoclusters with spatially localized Mn2+. J Phys Chem, 1996, 100(10): 4551–4555

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zuo.

Additional information

Recommended by ZHANG YuHeng (CAS Academician)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuo, M., Tan, S., Li, G. et al. Structure characterization, magnetic and photoluminescence properties of Mn doped ZnS nanocrystalline. Sci. China Phys. Mech. Astron. 55, 219–223 (2012). https://doi.org/10.1007/s11433-011-4595-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4595-3

Keywords

Navigation