Skip to main content
Log in

Base force element method (BFEM) on complementary energy principle for linear elasticity problem

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Using the concept of base forces as state variables, a new finite element method — the base force element method (BFEM) on complementary energy principle for linear elasticity problems is presented. Firstly, an explicit expression of compliance matrix for an element is derived through base forces by dyadic vectors. Then, the explicit control equations of finite element method of complementary energy principle are derived using Lagrange multiplier method. Thereafter, the base forces element procedure for linear elasticity is developed. Finally, several examples are analyzed to illustrate the reliability and accuracy of the formulation and the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zienkiewicz O C. The Finite Element Method. McGraw-Hill: New York, 1977

    MATH  Google Scholar 

  2. Bathe K J. Finite Element Procedures in Engineering Analysis. Prentice-Hall: New Jersey, 1982

    Google Scholar 

  3. Bathe K J. Finite Element Procedures. Prentice-Hall: New Jersey, 1996

    Google Scholar 

  4. Washizu K. Variational Methods in Elasticity and Plasticity. Pergamon Press: New York, 1982

    MATH  Google Scholar 

  5. Cook R D. Concepts and Applications of Finite Element Analysis. Wiley: New York, 1981

    MATH  Google Scholar 

  6. Pian T H H. Derivation of element stiffness matrices by assumed stress distributions. AIAA J, 1964, 2: 1333–1336

    Article  Google Scholar 

  7. Pian T H H. A historical note about “hybrid elements”. Int J Numer Methods Eng, 1978, 12: 891–892

    Article  Google Scholar 

  8. Pian T H H, Tong P. Basis of finite element methods for solid continua. Int J Numer Methods Eng, 1969, 1: 3–28

    Article  MATH  Google Scholar 

  9. Fraeijs de Veubeke B. Displacement and equilibrium models in the finite element method. Zienkiewicz O C, Holister G S, eds. Stress Analysis. Wiley: New York, 1965

    Google Scholar 

  10. Taylor R L, Zienkiewicz O C. Complementary energy with penalty functions in finite element analysis. Glowinski R, ed. Energy Methods in Finite Element Analysis. Wiley: New York, 1979

    Google Scholar 

  11. Gallagher R H, Heinrich J C, Sarigul N. Complementary energy revisited. Atluri, Gallagher R H, Zienkiewicz O C, eds. Hybrid and Mixed Finite Element Methods. Wiley: Chichester, 1983

    Google Scholar 

  12. Sarigul N, Gallagher R H. Assumed stress function finite element method: two-dimensional elasticity. Int J Numer Methods Eng, 1989, 28: 1577–1598

    Article  MathSciNet  MATH  Google Scholar 

  13. Vallabhan C V G, Azene M. A finite element model for plane elasticity problems using the complementary energy theorem. Int J Numer Methods Eng, 1982, 18: 291–309

    Article  MATH  Google Scholar 

  14. Rybicki E F, Schmit L A. An incremental complementary energy method of nonlinear stress analysis. AIAA J, 1970, 8: 1805–1812

    Article  ADS  MATH  Google Scholar 

  15. Więckowski Z, Youn S K, Moon B S. Stress-based finite element analysis of plane plasticity problems. Int J Numer Methods Eng, 1999, 44: 1505–1525

    Article  MATH  Google Scholar 

  16. Tabarrok B, Simpson A. An equilibrium finite element model for buckling analysis of plates. Int J Numer Methods Eng, 1977, 11: 1733–1751

    Article  MATH  Google Scholar 

  17. Gao Y C. A new description of the stress state at a point with applications. Arc Appl Mech, 2003, 73: 171–183

    Article  ADS  MATH  Google Scholar 

  18. Chen S H, Zhou Z, Gao Y C, Theoretical analysis and numerical calculation of large deformation for a wedge tensioned by concentrated force (in Chinese). Acta Mech Sin, 2000, 32: 117–125

    Google Scholar 

  19. Gao Y C, Gao T J. Large deformation contact of a rubber notch with a rigid wedge. Int J Solids Struct, 2000, 37: 4319–4334

    Article  MATH  Google Scholar 

  20. Gao Y C, Chen S H. Analysis of a rubber cone tensioned by a concentrated force. Mech Res Commun, 2001, 28: 49–54

    Article  MATH  Google Scholar 

  21. Gao Y C. Analysis of the interface crack for rubber-like materials. J Elast, 2002, 66: 1–19

    Article  MATH  Google Scholar 

  22. Gao Y C. Complementary energy principle for large elastic deformation (in Chinese). Sci China Ser G-Phys Mech Astron, 2006, 36: 298–311

    Google Scholar 

  23. Peng Y J, Liu Y H. Base force element method of complementary energy principle for large rotation problems. Acta Mech Sin, 2009, 25: 507–515

    Article  ADS  MATH  Google Scholar 

  24. Timoshenko S, Goodier J N. Theory of elasticity. 3rd ed. McGraw-Hill: New York, 1970

    MATH  Google Scholar 

  25. Kim K D, Liu G Z, Han S C. A resultant 8-node solid-shell element for geometrically nonlinear analysis. Comput Mech, 2005, 35: 315–331

    Article  MATH  Google Scholar 

  26. Klinkel S, Wagner W. A geometrical non-linear brick element based on the EAS-method. Int J Numer Methods Eng, 1997, 40: 4529–4545

    Article  MATH  Google Scholar 

  27. Klinkel S, Gruttmann F, Wagner W. A continuum based three-dimensional shell element for laminated structures. Comput Struct, 1999, 71: 43–62

    Article  Google Scholar 

  28. Taylor R L, Beresford P J, Wilson E L. A non-conforming element for stress analysis. Int J Numer Methods Eng, 1976, 10: 1211–1219

    Article  MATH  Google Scholar 

  29. Fu X R, Long Y Q, Yuan M W. A generalized conforming plane element based on analytical trial functions. Eng Mech, 2005, 22: 1–4

    Google Scholar 

  30. Pian T H H, Sumihara K. Rational approach for assumed stress finite element. Int J Numer Methods Eng, 1984, 20: 1685–1695

    Article  MATH  Google Scholar 

  31. Allman D J. A quadrilateral finite element including vertex rotations for plane elasticity analysis. Int J Numer Methods Eng, 1988, 26: 717–730

    Article  MATH  Google Scholar 

  32. Fu X R, Long Y Q, Yuan M W, et al. A generalized conforming plane element with internal parameters based on analytical trial functions. Eng Mech, 2006, 23: 1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YingHua Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Peng, Y. Base force element method (BFEM) on complementary energy principle for linear elasticity problem. Sci. China Phys. Mech. Astron. 54, 2025 (2011). https://doi.org/10.1007/s11433-011-4515-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-011-4515-6

Keywords

Navigation