Skip to main content
Log in

Base force element method of complementary energy principle for large rotation problems

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Using the concept of the base forces, a new finite element method (base force element method, BFEM) based on the complementary energy principle is presented for accurate modeling of structures with large displacements and large rotations. First, the complementary energy of an element is described by taking the base forces as state variables, and is then separated into deformation and rotation parts for the case of large deformation. Second, the control equations of the BFEM based on the complementary energy principle are derived using the Lagrange multiplier method. Nonlinear procedure of the BFEM is then developed. Finally, several examples are analyzed to illustrate the reliability and accuracy of the BFEM

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zienkiewicz O.C. (1977). The Finite Element Method. McGraw-Hill, New York

    MATH  Google Scholar 

  2. Bathe K.J. (1996). Finite Element Procedures. Prentice-Hall, New Jersey

    Google Scholar 

  3. Pian T.H.H. (1964). Derivation of element stiffness matrices by assumed stress distributions. AIAA J. 2: 1333–1336

    Article  Google Scholar 

  4. Pian T.H.H., & Tong P. (1969). Basis of finite element methods for solid continua. Int. J. Numer. Methods Eng. 1: 3–28

    Article  MATH  Google Scholar 

  5. Pian T.H.H. (1978). A historical note about “hybrid elements”. Int. J. Numer. Methods Eng. 12: 891–892

    Article  Google Scholar 

  6. Fraeijsde Veubeke B. (1965). Displacement and equilibrium models in the finite element method. In: Zienkiewicz, O.C., & Holister, G.S. (eds) Stress Analysis, Wiley, New York

    Google Scholar 

  7. Taylor R.L., & Zienkiewicz O.C. (1979). Complementary energy with penalty functions in finite element analysis. In: Glowinski, R. (eds) Energy Methods in Finite Element Analysis, Wiley, New York

    Google Scholar 

  8. Gallagher R.H., Heinrich J.C., & Sarigul N. (1983). Complementary energy revisited. In: Atluri, S.N., Gallagher, R.H., and Zienkiewicz, O.C. (eds) Hybrid and Mixed Finite Element Methods, Wiley, Chichester

    Google Scholar 

  9. Sarigul N., & Gallagher R.H. (1989). Assumed stress function finite element method: two-dimensional elasticity. Int. J. Numer. Methods Eng. 28: 1577–1598

    Article  MATH  MathSciNet  Google Scholar 

  10. Vallabhan C.V.G., & Azene M. (1982). A finite element model for plane elasticity problems using the complementary energy theorem. Int. J. Numer. Methods Eng. 18: 291–309

    Article  MATH  Google Scholar 

  11. Rybicki E.F., & Schmit L.A. (1970). An incremental complementary energy method of nonlinear stress analysis. AIAA J. 8: 1805–1812

    Article  MATH  Google Scholar 

  12. Wiȩkowski Z., Youn S.K., & Moon B.S. (1999). Stress-based finite element analysis of plane plasticity problems. Int. J. Numer. Methods Eng. 44: 1505–1525

    Article  Google Scholar 

  13. Tabarrok B., & Simpson A. (1977). An equilibrium finite element model for buckling analysis of plates. Int. J. Numer. Methods Eng. 11: 1733–1751

    Article  MATH  Google Scholar 

  14. Gao Y.C. (2003). A new description of the stress state at a point with applications. Arch. Appl. Mech. 73: 171–183

    Article  MATH  Google Scholar 

  15. Gao Y.C. (2002). Analysis of the interface crack for rubber-like materials. J. Elast. 66: 1–19

    Article  MATH  Google Scholar 

  16. Gao Y.C., & Chen S.H. (2001). Analysis of a rubber cone tensioned by a concentrated force. Mech. Res. Commun. 28: 49–54

    Article  MATH  Google Scholar 

  17. Gao Y.C., & Gao T.J. (2000). Large deformation contact of a rubber notch with a rigid wedge. Int. J. Solids Struct. 37: 4319–4334

    Article  MATH  Google Scholar 

  18. Chen S.H., Zhou Z., & Gao Y.C. (2000). Theoretical analysis and numerical calculation of large deformation for a wedge tensioned by concentrated force. Acta Mech. Sin. 32: 117–125 (in Chinese)

    Google Scholar 

  19. Shi Z.F., & Gao Y.C. (1995). Stress–strain field near the notch tip of a rubber sheet. Acta Mech. Sin. 11: 169–177

    Article  MATH  Google Scholar 

  20. Peng Y.J., & Jin M. (2007). Application of the base forces concept in finite element method on potential energy principle. J. Beijing Jiaotong Univ. 31: 1–4 (in Chinese)

    Google Scholar 

  21. Peng Y.J., & Jin M. (2007). A new finite element method on potential energy principle by base forces. J. Beijing Univ. Technol. 33: 687–692 (in Chinese)

    Google Scholar 

  22. Peng Y.J., & Jin M. (2006). New complementary finite-element method based on base forces. Chin. J. Appl. Mech. 23: 649–652 (in Chinese)

    Google Scholar 

  23. Peng Y.J., & Jin M. (2007). Finite element method for arbitrary meshes based on complementary energy principle using the base forces. Eng. Mech. 24: 41–45 (in Chinese)

    Google Scholar 

  24. Gao Y.C. (2006). Complementary energy principle for large elastic deformation. Sci. China (Ser. G) 36: 298–311 (in Chinese)

    Google Scholar 

  25. Bathe K.J., & Balourchi S. (1979). Large displacement analysis of three-dimensional beam structures. Int. J. Numer. Methods Eng. 14: 961–986

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijiang Peng.

Additional information

The project supported by the China Postdoctoral Science Foundation Funded Project (20080430038) and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (05004999200602).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Y., Liu, Y. Base force element method of complementary energy principle for large rotation problems. Acta Mech Sin 25, 507–515 (2009). https://doi.org/10.1007/s10409-009-0234-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0234-x

Keywords

Navigation