Skip to main content
Log in

Improved quantum “Ping-pong” protocol based on GHZ state and classical XOR operation

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In order to transmit the secure message, a deterministic secure quantum direct communication protocol which was called “Ping-pong” protocol was proposed by Boström and Felbinger [Boström K, et al. Phys Rev Lett, 2002, 89: 187902]. But the protocol was proved very vulnerable, and can be attacked by an eavesdropper. An improved “Ping-pong” protocol is presented to overcome the problem. The GHZ state particles are used to detect eavesdroppers, and the classical XOR operation which serves as a one-time-pad is used to ensure the security of the protocol. During the security analysis, the method of the entropy theory is introduced, and three detection strategies are compared quantitatively by using the constraint between the information which an eavesdropper can obtain and the interference introduced. If the eavesdropper gets the full information, the detection rate of the original “Ping-pong” protocol is 50%; the detection rate of the second protocol which used two particles of EPR pair as detection particles is also 50%; and the detection rate of the presented protocol is 75%. In the end, the security of the proposed protocol is discussed. The analysis results show that the improved “Ping-pong” protocol in this paper is more secure than the other two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G. Quantum cryptography: Public-key distribution and coin tossing. In: Proceeding of the IEEE International Conference on Computers Systems and Signal Processing. Washington: IEEE, 1984. 175–179

    Google Scholar 

  2. Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390: 575–579

    Article  ADS  Google Scholar 

  4. Bouwmeester D, Mattle K, Pan J W, et al. Experimental quantum teleportation of arbitrary quantum states. Appl Phys B, 1998, 67: 749–752

    Article  ADS  Google Scholar 

  5. Yoon-Ho K, Kulik S P, Yanhua S. Quantum teleportation with a complete Bell state measurement. J Mod Opt, 2002, 49: 221–236

    Article  ADS  MATH  Google Scholar 

  6. Prakash H. Quantum teleportation. In: International Conference on Emerging Trends in Electronic and Photonic Devices & Systems. Washington: IEEE, 2009. 18–23

    Google Scholar 

  7. Peng F, Xie G J, Wu T H. Optimizing quantum teleportation circuit using genetic algorithm. In: IEEE International Conference on Granular Computing. Washington: IEEE, 2009. 466–470

    Chapter  Google Scholar 

  8. Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett, 1992, 69: 2881–2884

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Klaus M, Harald W, Paul G, et al. Dense coding in experimental quantum communication. Phys Rev Lett, 1996, 76: 4656–4659

    Article  Google Scholar 

  10. Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  MathSciNet  ADS  Google Scholar 

  11. Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648–651

    Article  ADS  Google Scholar 

  12. Shimizu K, Imoto N. Communication channels secured from eavesdropping via transmission of photonic Bell states. Phys Rev A, 1999, 60: 157–166

    Article  ADS  Google Scholar 

  13. Shimizu K, Imoto N. Single-photon-interference communication equivalent to Bell-state-basis cryptographic quantum communication. Phys Rev A, 2000, 62: 054303

    Article  ADS  Google Scholar 

  14. Beige A, Englert B G, Kurtsiefer C, et al. Secure communication with a publicly known key. Acta Phys A, 2002, 101: 357–368

    Google Scholar 

  15. Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319

    Article  ADS  Google Scholar 

  16. Cai Q Y, Li B W. Deterministic secure communication without using entanglement. Chin Phys Lett, 2004, 21: 601–603

    Article  ADS  Google Scholar 

  17. Lucamarini M, Mancini S. Secure deterministic communication without entanglement. Phys Rev Lett, 2005, 94: 140501

    Article  ADS  Google Scholar 

  18. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

    Article  ADS  Google Scholar 

  19. Cai Q Y, Li B W. Improving the capacity of the Boström-Felbinger protocol. Phys Rev A, 2004, 69: 054301

    Article  ADS  Google Scholar 

  20. Gao T, Yan F L, Wang Z X. A simultaneous quantum secure direct communication scheme between the central party and other M parties. Chin Phys Lett, 2005, 22: 2473–2476

    Article  ADS  Google Scholar 

  21. Wang C, Deng F G, Long G L. Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun, 2005, 253: 15–20

    Article  ADS  Google Scholar 

  22. Li X H, Deng F G, Zhou H U. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302

    Article  ADS  Google Scholar 

  23. Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys Lett, 2007, 16: 2149–2153

    Google Scholar 

  24. Nguyen B A. Quantum dialogue. Phys Lett A, 2004, 328: 6–10

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Man Z X, Zhang Z J, Li Y. Quantum dialogue revisited. Chin Phys Lett, 2005, 22: 22–24

    Article  ADS  Google Scholar 

  26. Ji X, Zhang S. Secure quantum dialogue based on single-photon. Chin Phys Lett, 2006, 15: 1418–1420

    Google Scholar 

  27. Man Z X, Xia Y J, Nguyen B A. Quantum secure direct communication by using GHZ states and entanglement swapping. J Phys B: At Mol Opt Phys, 2006, 39: 3855–3863

    Article  ADS  Google Scholar 

  28. Man Z X, Xia Y J. Controlled bidirectional quantum direct communication by using a GHZ state. Chin Phys Lett, 2006, 23: 1680–1682

    Article  ADS  Google Scholar 

  29. Xia Y, Fu C B, Zhang S, et al. Quantum dialogue by using the GHZ state. J Korean Phys Soc, 2006, 48: 24–27

    Google Scholar 

  30. Jin X R, Ji X, Zhang Y Q, et al. Three-party quantum secure direct communication based on GHZ states. Phys Lett A, 2006, 354: 67–70

    Article  ADS  Google Scholar 

  31. Man Z X, Xia Y J. Improving of security of three-party quantum secure direct communication based on GHZ states. Chin Phys Lett, 2007, 24: 15–18

    Article  ADS  Google Scholar 

  32. Chen Y, Man Z X, Xia Y J. Quantum bidirectional secure direct communication via entanglement swapping. Chin Phys Lett, 2007, 24: 19–22

    Article  ADS  MATH  Google Scholar 

  33. Yang Y G, Wen Q Y. Quasi-secure quantum dialogue using single photons. Sci China Ser G-Phys Mech Astron, 2007, 50(5): 558–562

    Article  ADS  Google Scholar 

  34. Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

    Article  ADS  Google Scholar 

  35. Wójcik A. Eavesdropping on the “Ping-pong” quantum communication protocol. Phys Rev Lett, 2003, 90(15): 157901

    Article  ADS  Google Scholar 

  36. Deng F G, Li X H, Li C Y, et al. Eavesdropping on the “Ping-pong” quantum communication protocol freely in a noise channel. Chin Phys Lett, 2007, 16: 277–281

    Google Scholar 

  37. Cai Q Y. The “Ping-pong” protocol can be attacked without eavesdropping. Phys Rev Lett, 2003, 91: 109801

    Article  ADS  Google Scholar 

  38. Zhang Z J, Man Z X. The improved Boström-Felbinger protocol against attacks without eavesdropping. Int J Quantum Inf, 2004, 2: 521–527

    Article  Google Scholar 

  39. Gao F, Guo F Z, Wen Q Y, et al. Comparing the efficiency of different detection strategies of the “Ping-pong” protocol. Sci China Ser G-Phys Mech Astron, 2009, 39(2): 161–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Jin, H. & Jing, B. Improved quantum “Ping-pong” protocol based on GHZ state and classical XOR operation. Sci. China Phys. Mech. Astron. 54, 1612 (2011). https://doi.org/10.1007/s11433-011-4448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-011-4448-0

Keywords

Navigation