Skip to main content
Log in

Improvement of the security of quantum protocols for anonymous voting and surveying

  • Brief Report
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Several quantum protocols were proposed in a recent paper by Vaccaro, Spring and Chefles for ensuring the anonymous voting in a number of different scenarios. However, it is shown that their protocols are very vulnerable in terms of security. Improved schemes are also presented to recover the security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

    Article  ADS  Google Scholar 

  2. Bennett C H, Brassard G. Proceedings of the IEEE International Conference on Computers, Systems and Signal Processings, Bangalore, India. New York: IEEE, 1984. 175

    Google Scholar 

  3. Bostrom K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902-1–4

    Article  ADS  Google Scholar 

  4. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317-1–6

    ADS  Google Scholar 

  5. Man Z X, Zhang Z J, Li Y. Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin Phys Lett, 2005, 22: 18–21

    Article  ADS  Google Scholar 

  6. Man Z X, Zhang Z J, Li Y. Quantum dialogue revisited. Chin Phys Lett, 2005, 22: 22–24

    Article  ADS  Google Scholar 

  7. Lee H, Lim J, Yang H. Quantum direct communication with authentication. Phys Rev A, 2006, 73: 042305-1–5

    ADS  Google Scholar 

  8. Zhang Z J, Liu J, Wang D, et al. Comment on “Quantum direct communication with authentication”. Phys Rev A, 2007, 75: 26301-1–4

    ADS  Google Scholar 

  9. Man Z X, Xia Y J, Nguyen B A. Quantum secure direct communication by using GHZ states and entanglement swapping. J Phys B-At Mol Opt Phys, 2006, 39: 3855–3863

    Article  ADS  Google Scholar 

  10. Xu F X, Chen W, Wang S, et al. Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chin Sci Bull, 2009, 54(17): 2991–2997

    Article  Google Scholar 

  11. Zhang X L. One-way quantum identity authentication based on public key. Chin Sci Bull, 2009, 54(12): 2018–2021

    Article  Google Scholar 

  12. Hao L, Li J L, Long G L. Eavesdropping in a quantum secret sharing pro tocol based on Grover algorithm and its solution. Sci China Ser G-Phys Mech Astron, 2010, 53(3): 491–495

    Article  ADS  Google Scholar 

  13. Zhang X L, Ji D Y. Analysis of a kind of quantum cryptographic schemes based on secret sharing. Sci China Ser G-Phys Mech Astron, 2009, 52(9): 1313–1316

    Article  ADS  Google Scholar 

  14. Gao F, Guo F Z, Wen Q Y, et al. Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci China Ser G-Phys Mech Astron, 2008, 51(5): 559–566

    Article  ADS  Google Scholar 

  15. Vaccaro J A, Spring J, Chefles A. Quantum protocols for anonymous voting and surveying. Phys Rev A, 2007, 75: 012333-1–8

    Article  ADS  Google Scholar 

  16. Long G L, Liu X S. Theoretically efficient high-capacity quantum-keydistribution scheme. Phys Rev A, 2002, 65: 032302-1–3

    Article  ADS  Google Scholar 

  17. Rigolin G. Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys Rev A, 2005, 71: 032303-1–5

    Article  ADS  Google Scholar 

  18. Cabrillo C, Cirac J I, Garca-Fernández P, et al. Creation of entangled states of distant atoms by interference. Phys Rev A, 1999, 59(2): 1025–1033

    Article  ADS  Google Scholar 

  19. Bose S, Knight P L, Plenio M B, et al. Proposal for teleportation of an atomic state via cavity decay. Phys Rev Lett, 1999, 83(24): 5158–5161

    Article  ADS  Google Scholar 

  20. Sensen A S, Mmer K. Probabilistic generation of entanglement in optical cavities. Phys Rev Lett, 2003, 90(12): 127903

    Article  ADS  Google Scholar 

  21. Duan L M. Entangling many atomic ensembles through laser manipulation. Phys Rev Lett, 2002, 88(17): 170402

    Article  ADS  Google Scholar 

  22. Matsukevich D N, Chanelière T, Jenkins S D, et al. Entanglement of remote atomic qubits. Phys Rev Lett, 2006, 96: 030405

    Article  ADS  Google Scholar 

  23. Man Z X, Xia Y J, Nguyen B A. Entanglement measure and dynamics of multiqubit systems: Non-Markovian versus Markovian and generalized monogamy relations. New J Phys, 2010, 12: 033020-1–17

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingJun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Q., Zhang, S. Improvement of the security of quantum protocols for anonymous voting and surveying. Sci. China Phys. Mech. Astron. 53, 2131–2134 (2010). https://doi.org/10.1007/s11433-010-4130-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-4130-y

Keywords

Navigation