Skip to main content
Log in

Optimized third-order force-gradient symplectic algorithms

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

With the natural splitting of a Hamiltonian system into kinetic energy and potential energy, we construct two new optimal thirdorder force-gradient symplectic algorithms in each of which the norm of fourth-order truncation errors is minimized. They are both not explicitly superior to their no-optimal counterparts in the numerical stability and the topology structure-preserving, but they are in the accuracy of energy on classical problems and in one of the energy eigenvalues for one-dimensional time-independent Schrödinger equations. In particular, they are much better than the optimal third-order non-gradient symplectic method. They also have an advantage over the fourth-order non-gradient symplectic integrator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wisdom J. The origin of the Kirkwood gaps - a mapping for asteroidal motion near the 3/1 commensurability. Astron J, 1982, 87: 577–593

    Article  MathSciNet  ADS  Google Scholar 

  2. Ruth R D. A canonical integration technique. IEEE Tran Nucl Sci, 1983, 30: 2669–2671

    Article  ADS  Google Scholar 

  3. Feng K, Qin M Z. The symplectic methods for computation of Hamiltonian equations. In: Zhu Y L, Guo B Y, eds. Proc Conf on Numerical Methods for PDE’s. Berlin: Springer, 1987. 1–37. Lect Notes in Math 1297

    Google Scholar 

  4. Forest E, Ruth R D. Fourth-order symplectic integration. Physica D, 1990, 43: 105–117

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Yoshida H. Construction of higher order symplectic integrators. Phys Lett A, 1990, 150: 262–269

    Article  MathSciNet  ADS  Google Scholar 

  6. Chin S A. Symplectic integrators from composite operator factorizations. Phys Lett A, 1997, 75: 226–344

    MathSciNet  Google Scholar 

  7. Chin S A, Chen C R. Fourth order gradient symplectic integrator methods for solving the time-dependent Schrödinger equation. J Chem Phys, 2001, 114: 7338–7341

    Article  ADS  Google Scholar 

  8. Chin S A, Chen C R. Forward symplectic integrators for solving gravitational few-body problems. Celest Mech Dyn Astron, 2005, 91: 301–322

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Chin S A. Physics of symplectic integrators: Perihelion advances and symplectic corrector algorithms. Phys Rev E, 2007, 75: 036701

    Article  MathSciNet  ADS  Google Scholar 

  10. Xu J, Wu X. Several fourth order force gradient symplectic algorithms. Res Astron Astrophys, 2010, 10: 173–188

    Article  Google Scholar 

  11. McLachlan R I, Atela P. The accuracy of symplectic integrators. Nonlinearity, 1992, 5: 541–562

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Casas F, Murua A. An efficient algorithm for computing the Baker- Campbell-Hausdorff series and some of its applications. J Mathemat Phys, 2009, 50: 033513

    Article  MathSciNet  ADS  Google Scholar 

  13. Liu F Y, Wu X, Lu B K. On the numerical stability of some symplectic integrators. Chin Astorn Astrophys, 2007, 31: 172–186

    Article  MathSciNet  ADS  Google Scholar 

  14. Sun Y S, Zhou J L. Global applicability of the symplectic integrator method of Hamiltonian systems. Celest Mech Dyn Astron, 1996, 64: 185–195

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Yoshida H. Recent progress in the theory and application of symplectic integration. Celest Mech Dyn Astron, 1993, 56: 27–43

    Article  MATH  ADS  Google Scholar 

  16. Wisdom J, Holman M. Symplectic maps for the n-body problem. Astron J, 1991, 102: 1520–1538

    Article  ADS  Google Scholar 

  17. Mikkola S. Practical symplectic methods with time transformation for the few-body problem. Celest Mech Dyn Astron, 1997, 67: 145–165

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Zhong S Y, Wu X. A velocity scaling method with least-squares correction of several constraints. Astrophys Space Sci, 2009, 324: 31–40

    Article  ADS  Google Scholar 

  19. Liu X S, Zhou Z Y, Ding P Z, et al. Numerical solution of one-dimensional time-independent Schrödinger equation by using symplectic schemes. Int J Quant Chem, 2000, 79: 343–349

    Article  Google Scholar 

  20. Quarteroni A, Sacco R, Saleri F. Numerical Mathematics. Berlin: Springer Science, 2000. 254

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Wu, X. Optimized third-order force-gradient symplectic algorithms. Sci. China Phys. Mech. Astron. 53, 1600–1609 (2010). https://doi.org/10.1007/s11433-010-4074-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-4074-2

Keywords

Navigation