Skip to main content
Log in

Secure output synchronization of heterogeneous multi-agent systems against false data injection attacks

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper studies secure output synchronization for heterogeneous multi-agent systems against false data injection (FDI) attacks. Both the sensors and actuators of agents may be injected into FDI attacks. To mitigate the malicious impact of these attacks on synchronization performance, a desired reference model, which is combined with an auxiliary system, is first designed for each agent to simulate its normal system dynamics. Then, based on this reference model, a state feedback cooperative controller and a static output feedback cooperative controller, which consist of adaptive compensators, are proposed, respectively. The integrated control protocols can ensure that the output synchronization error is small by adjusting some designed parameters even in the presence of FDI attacks. An illustrative example is employed to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bidram A, Lewis F L, Davoudi A. Distributed control systems for small-scale power networks: using multiagent cooperative control theory. IEEE Control Syst Mag, 2014, 34: 56–77

    Article  MathSciNet  MATH  Google Scholar 

  2. Fang H, Shang C S, Chen J. An optimization-based shared control framework with applications in multi-robot systems. Sci China Inf Sci, 2018, 61: 014201

    Article  MathSciNet  Google Scholar 

  3. Qin J H, Gao H J, Zheng W X. Exponential synchronization of complex networks of linear systems and nonlinear oscillators: a unified analysis. IEEE Trans Neural Netw Learn Syst, 2015, 26: 510–521

    Article  MathSciNet  Google Scholar 

  4. Ding D R, Wang Z D, Han Q L. A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks. IEEE Trans Autom Control, 2020, 65: 1792–1799

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhang Y, Tian Y P. A fully distributed weight design approach to consensus Kalman filtering for sensor networks. Automatica, 2019, 104: 34–40

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang Y, Sun L C, Hu G Q. Distributed consensus-based multitarget filtering and its application in formation-containment control. IEEE Trans Control Netw Syst, 2020, 7: 503–515

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen W, Ding D R, Ge X H, et al. containment control of multiagent systems under event-triggered communication scheduling: the finite-horizon case. IEEE Trans Cybern, 2020, 50: 1372–1382

    Article  Google Scholar 

  8. Li Z K, Duan Z S, Chen G R, et al. Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans Circ Syst I, 2010, 57: 213–224

    MathSciNet  MATH  Google Scholar 

  9. Wang Y J, Song Y D, Lewis F L. Robust adaptive fault-tolerant control of multiagent systems with uncertain nonidentical dynamics and undetectable actuation failures. IEEE Trans Ind Elec, 2015, 62: 3978–3988

    Google Scholar 

  10. Qin J H, Fu W M, Zheng W X, et al. On the bipartite consensus for generic linear multiagent systems with input saturation. IEEE Trans Cybern, 2017, 47: 1948–1958

    Article  Google Scholar 

  11. Yi X L, Liu K, Dimarogonas D V, et al. Dynamic event-triggered and self-triggered control for multi-agent systems. IEEE Trans Autom Control, 2018, 64: 3300–3307

    Article  MathSciNet  MATH  Google Scholar 

  12. Xu W Y, Ho D W C, Zhong J, et al. Event/self-triggered control for leader-following consensus over unreliable network with DoS attacks. IEEE Trans Neural Netw Learn Syst, 2019, 30: 3137–3149

    Article  MathSciNet  Google Scholar 

  13. Yu W W, Wang H, Hong H F, et al. Distributed cooperative anti-disturbance control of multi-agent systems: an overview. Sci China Inf Sci, 2017, 60: 110202

    Article  MathSciNet  Google Scholar 

  14. Lui D G, Petrillo A, Santini S. An optimal distributed PID-like control for the output containment and leader-following of heterogeneous high-order multi-agent systems. Inf Sci, 2020, 339: 166–184

    Article  MathSciNet  MATH  Google Scholar 

  15. Yaghmaie F A, Lewis F L, Su R. Output regulation of linear heterogeneous multi-agent systems via output and state feedback. Automatica, 2016, 67: 157–164

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang J C, Zhu F L. Observer-based output consensus of a class of heterogeneous multi-agent systems with unmatched disturbances. Commun Nonlinear Sci Numer Simul, 2018, 56: 240–251

    Article  MathSciNet  MATH  Google Scholar 

  17. Almeida J, Silvestre C, Pascoal A. Event-triggered output synchronization of heterogeneous multi-agent systems. Int J Robust Nonlinear Control, 2017, 27: 1302–1338

    Article  MathSciNet  MATH  Google Scholar 

  18. Du H B, Wen G H, Wu D, et al. Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems. Automatica, 2020, 113: 108797

    Article  MathSciNet  MATH  Google Scholar 

  19. Feng Y Z, Zheng W X. Adaptive tracking control for nonlinear heterogeneous multi-agent systems with unknown dynamics. J Franklin Inst, 2019, 356: 2780–2797

    Article  MathSciNet  MATH  Google Scholar 

  20. Shi S, Feng H Y, Liu W H, et al. Finite-time consensus of high-order heterogeneous multi-agent systems with mismatched disturbances and nonlinear dynamics. Nonlinear Dyn, 2019, 96: 1317–1333

    Article  MATH  Google Scholar 

  21. Tan S, Guerrero J M, Xie P L, et al. Brief survey on attack detection methods for cyber-physical systems. IEEE Syst J, 2020, 14: 5329–5339

    Article  Google Scholar 

  22. Zhou Y Q, Vamvoudakis K G, Haddad W M, et al. A secure control learning framework for cyber-physical systems under sensor and actuator attacks. IEEE Trans Cybern, 2021, 51: 4648–4660

    Article  Google Scholar 

  23. Gao Y B, Sun G H, Liu J X, et al. State estimation and self-triggered control of CPSs against joint sensor and actuator attacks. Automatica, 2020, 113: 108687

    Article  MathSciNet  MATH  Google Scholar 

  24. Zeng W T, Chow M Y. Resilient distributed control in the presence of misbehaving agents in networked control systems. IEEE Trans Autom Control, 2014, 44: 2038–2049

    Google Scholar 

  25. Teixeira A, Shames I, Sandberg H, et al. Distributed fault detection and isolation resilient to network model uncertainties. IEEE Trans Cybern, 2014, 44: 2024–2037

    Article  Google Scholar 

  26. Pasqualetti F, Bicchi A, Bullo F. Consensus computation in unreliable networks: a system theoretic approach. IEEE Trans Autom Control, 2011, 57: 90–104

    Article  MathSciNet  MATH  Google Scholar 

  27. Sundaram S, Hadjicostis C N. Distributed function calculation via linear iterative strategies in the presence of malicious agents. IEEE Trans Autom Control, 2010, 56: 1495–1508

    Article  MathSciNet  MATH  Google Scholar 

  28. Zuo Z Q, Cao X, Wang Y J. Security control of multi-agent systems under false data injection attacks. Neurocomputing, 2020, 404: 240–246

    Article  Google Scholar 

  29. Ding D R, Wang Z D, Ho D W, et al. Observer-based event-triggering consensus control for multiagent systems with lossy sensors and cyber-attacks. IEEE Trans Cybern, 2016, 47: 1936–1947

    Article  Google Scholar 

  30. He W L, Gao X Y, Zhong W M, et al. Secure impulsive synchronization control of multi-agent systems under deception attacks. Inf Sci, 2018, 459: 354–368

    Article  MathSciNet  MATH  Google Scholar 

  31. Cui Y, Liu Y R, Zhang W B, et al. Sampled-based consensus for nonlinear multiagent systems with deception attacks: the decoupled method. IEEE Trans Syst Man Cybern Syst, 2021, 51: 561–573

    Article  Google Scholar 

  32. Li X M, Zhou Q, Li P S, et al. Event-triggered consensus control for multi-agent systems against false data-injection attacks. IEEE Trans Cybern, 2019, 50: 1856–1866

    Article  Google Scholar 

  33. Torre G D L, Yucelen T. Adaptive architectures for resilient control of networked multiagent systems in the presence of misbehaving agents. Int J Control, 2018, 91: 495–507

    Article  MathSciNet  MATH  Google Scholar 

  34. Modares H, Kiumarsi B, Lewis F L, et al. Resilient and robust synchronization of multiagent systems under attacks on sensors and actuators. IEEE Trans Cybern, 2019, 50: 1240–1250

    Article  Google Scholar 

  35. Mustafa A, Modares H. Attack analysis and resilient control design for discrete-time distributed multi-agent systems. IEEE Robot Autom Lett, 2019, 5: 369–376

    Article  Google Scholar 

  36. Chen C, Lewis F L, Xie S L, et al. Resilient adaptive and H controls of multi-agent systems under sensor and actuator faults. Automatica, 2019, 102: 19–26

    Article  MathSciNet  MATH  Google Scholar 

  37. Ma Q, Miao G Y. Output consensus for heterogeneous multi-agent systems with linear dynamics. Appl Math Comput, 2015, 271: 548–555

    MathSciNet  MATH  Google Scholar 

  38. Zhang H W, Lewis F L, Das A. Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback. IEEE Trans Autom Control, 2011, 56: 1948–1952

    Article  MathSciNet  MATH  Google Scholar 

  39. Gadewadikar J, Lewis F L, Abu-Khalaf M. Necessary and sufficient conditions for H static output-feedback control. J Guidance Control Dyn, 2006, 29: 915–920

    Article  Google Scholar 

  40. Wieland P, Sepulchre R, Allgöwer F. An internal model principle is necessary and sufficient for linear output synchronization. Automatica, 2011, 47: 1068–1074

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61973082), Six Talent Peaks Project in Jiangsu Province (Grant No. XYDXX-005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, S., Huang, D. & Zhang, Y. Secure output synchronization of heterogeneous multi-agent systems against false data injection attacks. Sci. China Inf. Sci. 65, 162204 (2022). https://doi.org/10.1007/s11432-020-3148-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3148-x

Keywords

Navigation