Skip to main content
Log in

Finite-time consensus of high-order heterogeneous multi-agent systems with mismatched disturbances and nonlinear dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, we investigate the finite-time consensus problem for a general class of high-order nonlinear heterogeneous multi-agent systems, for which not only the unknown nonlinear dynamics, mismatched disturbances but also the system orders are not required to be identical. We propose two families of consensus algorithms, and the output consensus can be achieved with them in a finite time even with nonlinear dynamics and mismatched disturbances. The Lipschitz-like condition generally required in the literature is removed in this paper. The integral sliding-mode control technique is used to construct the first family of consensus algorithms, which may cause chattering problem for the existence of high-frequency switching terms. To overcome the chattering phenomenon, a new variable-gain finite-time observer is developed to construct the second family of continuous algorithms based on a different assumption. It is shown that some existing consensus protocols can be broadened in several directions through the framework of this study; moreover, the output feedback finite-time consensus can also be solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao, L.W., Hua, C.C.: Finite-time consensus tracking of second-order multi-agent systems via nonsingular TSM. Nonlinear Dyn. 75(1–2), 311–318 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ma, Z., Wang, Y., Li, X.: Cluster-delay consensus in first-order multi-agent systems with nonlinear dynamics. Nonlinear Dyn. 83(3), 1303–1310 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Quan, Y., Chen, W., Wu, Z., Peng, L.: Distributed fault detection and isolation for leader–follower multi-agent systems with disturbances using observer techniques. Nonlinear Dyn. 93, 863–871 (2018)

    Article  MATH  Google Scholar 

  4. Hu, G.: Robust consensus tracking of a class of second-order multi-agent dynamic systems. Syst. Control Lett. 61(1), 134–142 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Huang, Y., Jia, Y.: Fixed-time consensus tracking control of second-order multi-agent systems with inherent nonlinear dynamics via output feedback. Nonlinear Dyn. 91(2), 1289–1306 (2018)

    Article  MATH  Google Scholar 

  6. He, W., Cao, J.: Consensus control for high-order multi-agent systems. IET Control Theory Appl. 5(1), 231–238 (2011)

    Article  MathSciNet  Google Scholar 

  7. Zhou, B., Lin, Z.: Consensus of high-order multi-agent systems with large input and communication delays. Automatica 50(2), 452–464 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ren, W., Beard, R.W., Atkins, E.M.: A survey of consensus problems in multi-agent coordination. In: Proceedings of American control conference, pp. 1859–1864 (2005)

  9. Cao, Y., Yu, W., Ren, W., Chen, G.: An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans. Ind. Inform. 9(1), 427–438 (2013)

    Article  Google Scholar 

  10. Sun, F., Zhu, W., Li, Y., Liu, F.: Finite-time consensus problem of multi-agent systems with disturbance. J. Frankl. Inst. 353(12), 2576–2587 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, S., Du, H., Lin, X.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47(8), 1706–1712 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhou, Y., Yu, X., Sun, C., Yu, W.: Higher order finite-time consensus protocol for heterogeneous multi-agent systems. Int. J. Control 88(2), 285–294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hua, C.C., You, X., Guan, X.P.: Leader-following consensus for a class of high-order nonlinear multi-agent systems. Automatica 73, 138–144 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, C., Yang, J., Li, S.: A generalized exact tracking control methodology for disturbed nonlinear systems via homogeneous domination approach. Int. J. Robust Nonlinear Control 27, 3079–3096 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Min, H., Xu, S., Zhang, B., Duan, N.: Practically finite-time control for nonlinear systems with mismatching conditions and application to a robot system. IEEE Trans. Syst. Man Cybern. Syst. (2017). https://doi.org/10.1109/TSMC.2017.2748227. (to be published)

    Article  Google Scholar 

  16. Jiao, T., Zheng, W.X., Xu, S.: Stability analysis for a class of random nonlinear impulsive systems. Int. J. Robust Nonlinear Control 27(7), 1171–1193 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, W., Li, P.: Disturbance observer-based fault-tolerant adaptive control for nonlinearly parameterized systems. IEEE Trans. Ind. Electron. (2019). https://doi.org/10.1109/TIE.2018.2889634. (to be published)

    Article  Google Scholar 

  18. Jia, X., Chen, X., Xu, S., Zhang, B., Zhang, Z.: Adaptive output feedback control of nonlinear time-delay systems with application to chemical reactor systems. IEEE Trans. Ind. Electron. 64(6), 4792–4799 (2017)

    Article  Google Scholar 

  19. Shen, H., Li, F., Wu, Z., Park, J.H., Sreeram, V.: Fuzzy-model-based non-fragile control for nonlinear singularly perturbed systems with semi-markov jump parameters. IEEE Trans. Fuzzy Syst. 26(6), 3428–3439 (2018)

    Article  Google Scholar 

  20. Min, H., Xu, S., Ma, Q., Zhang, B., Zhang, Z.: Composite-observer-based output-feedback control for nonlinear time-delay systems with input saturation and its application. IEEE Trans. Ind. Electron. 65(7), 5856–5863 (2018)

    Article  Google Scholar 

  21. Min, H., Xu, S., Zhang, B., Ma, Q.: Output-feedback control for stochastic nonlinear systems subject to input saturation and time-varying delay. IEEE Trans. Autom. Control 64(1), 359–364 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Min, H., Xu, S., Zhang, B., Ma, Q.: Globally adaptive control for stochastic nonlinear time-delay systems with perturbations and its application. Automatica 102, 105–110 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shi, S., Xu, S., Zhang, B., Ma, Q., Zhang, Z.: Global second-order sliding mode control for nonlinear uncertain systems. Int. J. Robust Nonlinear Control 29(1), 224–237 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shi, S., Xu, S., Liu, W., Zhang, B.: Global fixed-time consensus tracking of nonlinear uncertain multiagent systems with high-order dynamics. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2879892. (to be published)

  25. Liu, C.L., Liu, F.: Stationary consensus of heterogeneous multi-agent systems with bounded communication delays. Automatica 47(9), 2130–2133 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin, X., Zheng, Y.: Finite-time consensus of switched multiagent systems. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–11 (2017)

    Article  Google Scholar 

  27. Zheng, Y., Zhu, Y., Wang, L.: Consensus of heterogeneous multi-agent systems. IET Control Theory Appl. 5(16), 1881–1888 (2011)

    Article  MathSciNet  Google Scholar 

  28. Zheng, Y., Wang, L.: Finite-time consensus of heterogeneous multi-agent systems with and without velocity measurements. Syst. Control Lett. 61(8), 871–878 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zheng, Y., Ma, J., Wang, L.: Consensus of hybrid multi-agent systems. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–7 (2017)

    Article  Google Scholar 

  30. Seyboth, G.S., Dimarogonas, D.V., Johansson, K.H., Frasca, P., Allgöwer, F.: On robust synchronization of heterogeneous linear multi-agent systems with static couplings. Automatica 53, 392–399 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kim, H., Shim, H., Seo, J.H.: Output consensus of heterogeneous uncertain linear multi-agent systems. IEEE Trans. Autom. Control 56(1), 200–206 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bidram, A., Lewis, F.L., Davoudi, A.: Synchronization of nonlinear heterogeneous cooperative systems using input-output feedback linearization. Automatica 50(10), 2578–2585 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cao, Y., Ren, W.: Finite-time consensus for multi-agent networks with unknown inherent nonlinear dynamics. Automatica 50(10), 2648–2656 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mei, J., Ren, W., Ma, G.: Distributed coordination for second-order multi-agent systems with nonlinear dynamics using only relative position measurements. Automatica 49(5), 1419–1427 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, Z., Ren, W., Liu, X., Fu, M.: Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols. IEEE Trans. Autom. Control 58(7), 1786–1791 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sun, J., Geng, Z., Lv, Y.: Adaptive output feedback consensus tracking for heterogeneous multi-agent systems with unknown dynamics under directed graphs. Syst. Control Lett. 87, 16–22 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhu, L., Chen, Z.: Robust consensus of nonlinear heterogeneous multi-agent systems. In: Proceedings of IEEE conference on decision and control, pp. 6724–6728 (2013)

  38. Li, Z., Duan, Z., Lewis, F.L.: Distributed robust consensus control of multi-agent systems with heterogeneous matching uncertainties. Automatica 50(3), 883–889 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, S., Sun, H., Yang, J., Yu, X.: Continuous finite-time output regulation for disturbed systems under mismatching condition. IEEE Trans. Autom. Control 60(1), 277–282 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shi, S., Yu, X., Khoo, S.: Robust finite-time tracking control of nonholonomic mobile robots without velocity measurements. Int. J. Control 89(2), 411–423 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shi, S., Xu, S., Yu, X., Li, Y., Zhang, Z.: Finite-time tracking control of uncertain nonholonomic systems by state and output feedback. Int. J. Robust Nonlinear Control 28(6), 1942–1959 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ding, S., Zheng, W.X., Sun, J., Wang, J.: Second-order sliding-mode controller design and its implementation for buck converters. IEEE Trans. Ind. Inform. 14(5), 1990–2000 (2018)

    Article  Google Scholar 

  43. Zhang, Y., Yang, Y., Zhao, Y., Wen, G.: Distributed finite-time tracking control for nonlinear multi-agent systems subject to external disturbances. Int. J. Control 86(1), 29–40 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Khoo, S., Xie, L., Man, Z.: Robust finite-time consensus tracking algorithm for multirobot systems. IEEE/ASME Trans. Mechatron. 14(2), 219–228 (2009)

    Article  Google Scholar 

  45. Pilloni, A., Pisano, A., Franceschelli, M., Usai, E.: Finite-time consensus for a network of perturbed double integrators by second-order sliding mode technique. In: Proceedings of IEEE conference on decision and control, pp. 2145–2150 (2013)

  46. Hui, Q., Haddad, W.M., Bhat, S.P.: Finite-time semistability and consensus for nonlinear dynamical networks. IEEE Trans. Autom. Control 53(8), 1887–1900 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yu, S., Long, X.: Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode. Automatica 54, 158–165 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Davila, J.: Exact tracking using backstepping control design and high-order sliding modes. IEEE Trans. Autom. Control 58(8), 2077–2081 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Loza, A.F.D., Cieslak, J., Henry, D., Zolghadri, A., Fridman, L.M.: Output tracking of systems subjected to perturbations and a class of actuator faults based on HOSM observation and identification. Automatica 59, 200–205 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Mondal, S., Su, R., Xie, L.: Heterogeneous consensus of higher order multi agent systems with mismatched uncertainties using sliding mode control. Int. J. Robust Nonlinear Control 27(13), 2303–2320 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Shi, S., Xu, S., Li, Y., Chu, Y., Zhang, Z.: Robust predictive scheme for input delay systems subject to nonlinear disturbances. Nonlinear Dyn. 93(3), 1035–1045 (2018)

    Article  MATH  Google Scholar 

  52. Shi, S., Xu, S., Yu, X., Lu, J., Chen, W., Zhang, Z.: Robust output-feedback finite-time regulator of systems with mismatched uncertainties bounded by positive functions. IET Control Theory Appl. 11(17), 3107–3114 (2017)

    Article  MathSciNet  Google Scholar 

  53. Wang, C., Zuo, Z., Sun, J., Yang, J., Ding, Z.: Consensus disturbance rejection for Lipschitz nonlinear multi-agent systems with input delay: a DOBC approach. J. Frankl. Inst. 354(1), 298–315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ai, X., Yu, J., Jia, Z., Yang, D., Xu, X., Shen, Y.: Disturbance observer-based consensus tracking for nonlinear multiagent systems with switching topologies. Int. J. Robust Nonlinear Control 28(6), 2144–2160 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang, J., Zhu, F.: Observer-based output consensus of a class of heterogeneous multi-agent systems with unmatched disturbances. Commun. Nonlinear Sci. Numer. Simul. 56, 240–251 (2018)

    Article  MathSciNet  Google Scholar 

  56. Hardy, G.H., Littlewood, E.J., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  57. Wheeler, G., Su, C.Y., Stepanenko, Y.: A sliding mode controller with improved adaptation laws for the upper bounds on the norm of uncertainties. Automatica 34(12), 1657–1661 (1998)

    Article  MATH  Google Scholar 

  58. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  59. Bhat, S.P., Bernstein, D.S.: Finite time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  60. Utkin, V.: Sliding modes in control and optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  61. Kawamura, A., Itoh, H., Sakamoto, K.: Chattering reduction of disturbance observer based sliding mode control. IEEE Trans. Ind. Appl. 30(2), 456–461 (1994)

    Article  Google Scholar 

  62. Yang, J., Li, S., Su, J., Yu, X.: Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 49(7), 2287–2291 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  63. Moreno, J.A., Marisol, O.: A Lyapunov approach to second-order sliding mode controllers and observers. In: Proceedings of IEEE conference on decision and control (2008)

  64. Gonzalez, T., Moreno, J., Fridman, L.: Variable gain super-twisting sliding mode control. IEEE Trans. Autom. Control 57(8), 2100–2105 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  65. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding mode control and observation. Birkhäuser, Boston (2013)

    Google Scholar 

  66. Wang, W., Huang, J., Wen, C., Fan, H.: Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots. Automatica 50(4), 1254–1263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61703249, 61773191, 61803208, the Natural Science Foundation of Jiangsu Province under Grant BK20180726, the Natural Science Research Project of Jiangsu Higher Education Institutions under Grant 18KJB120005, the Natural Science Foundation of Shandong Province for Outstanding Young Talents in Provincial Universities under Grant ZR2016JL025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, S., Feng, H., Liu, W. et al. Finite-time consensus of high-order heterogeneous multi-agent systems with mismatched disturbances and nonlinear dynamics. Nonlinear Dyn 96, 1317–1333 (2019). https://doi.org/10.1007/s11071-019-04856-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04856-3

Keywords

Navigation