Skip to main content
Log in

New solution bounds of the continuous algebraic Riccati equation and their applications in redundant control input systems

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Redundant control inputs have wide applications in engineering, and have significant effects in quadratic performance optimal control, H2 control, tracking control, and many uncertain systems. In this paper, using some properties related to the inequality of the special matrix and the transformation of the matrix equation, we present new bounds of the solution of the continuous algebraic Riccati equation. The new bounds are more precise than those proposed in some existing studies on this topic. Subsequently, two lower bounds are presented for the optimal controller gain of the system (1), and a new upper bound is obtained for the optimal controller gain of the extended control system (3). Several examples are provided to demonstrate that our bounds of the optimal controller gain are superior to some previous results. Subsequently, we provide the applications of the new bounds in relevant redundant control problems and obtain good results. Finally, the corresponding numerical examples are provided to illustrate the effectiveness of our results and to compare them with the existing results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee H, Snyder S, Patterson A, et al. Aircraft actuator fault detection and isolation using piecewise constant fault estimation scheme. In: Proceedings of AIAA Conference on Guidance, Navigation and Control, 2016. 2016–0373

    Google Scholar 

  2. Shi C, Wang X J, Wang S P, et al. Adaptive decoupling synchronous control of dissimilar redundant actuation system for large civil aircraft. Aerospace Sci Tech, 2015, 47: 114–124

    Article  Google Scholar 

  3. Gentry N K. On-Board Redundant Power System for Unmanned Aerial Vehicles. US Patent 9 376 208, 2016-06-28

  4. Roberts N H, Shiosaki D T, Welsh R D. Redundant Aircraft Propulsion System Using Multiple Motors Per Drive Shaft. US Patent Application 14/973 618, 2017-06-22

  5. Van Eykeren L, Chu Q P. Sensor fault detection and isolation for aircraft control systems by kinematic relations. Control Eng Practice, 2014, 31: 200–210

    Article  Google Scholar 

  6. Yao Y, Duan Z S, Huang L. Effects on redundant control inputs in SLV system. Control Eng China, 2010, S1

    Google Scholar 

  7. Jiang T, Khorasani K. A fault detection, isolation and reconstruction strategy for a satellite’s attitude control subsystem with redundant reaction wheels. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics. 2007. 3146–3152

    Google Scholar 

  8. KishoreW C A, Sen S, Ray G. Disturbance rejection and control allocation of over-actuated systems H. In: Proceedings of IEEE International Conference on Industrial Technology, 2006. 1054–1059

    Google Scholar 

  9. Greensite A L. Control Theory: Analysis and Desing of Space Vehicle Flight Control Systems. Sparta: Spartan Books, 1970

    Google Scholar 

  10. Williams A, Puig-Suari J, Villa M. Low-cost, low mass avionics system for a dedicated Nano-satellite launch vehicle. In: Proceedings of IEEE Aerospace Conference, 2015

    Google Scholar 

  11. Giovanni I, Alessandro M. Complementary control for robots with actuator redundancy: an underwater vehicle application. Robotica, 2015, 35: 206–223

    Google Scholar 

  12. Tatlicioglu E, Braganza D, Burg T C, et al. Adaptive control of redundant robot manipulators with sub-task objectives. Robotica, 2009, 27: 873–881

    Article  Google Scholar 

  13. Li Z J, Deng J, Lu R Q, et al. Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach. IEEE Trans Syst Man Cybern Syst, 2017, 46: 740–749

    Article  Google Scholar 

  14. Duan Z S, Huang L, Yao Y, et al. On the effects of redundant control inputs. Automatica, 2012, 48: 2168–2174

    Article  MathSciNet  MATH  Google Scholar 

  15. Zaccarian L. On dynamic control allocation for input-redundant control systems. In: Proceedings of IEEE Conference on Decision and Control, 2007. 1192–1197

    Google Scholar 

  16. Zaccarian L. Dynamic allocation for input redundant control systems. Automatica, 2009, 45: 1431–1438

    Article  MathSciNet  MATH  Google Scholar 

  17. Härkegård O, Glad S T. Resolving actuator redundancy - optimal control vs. control allocation. Automatica, 2005, 41: 137–144

    MathSciNet  MATH  Google Scholar 

  18. Jiang J, Zhao Q. Design of reliable control systems possessing actuator redundancies. J Guid Control Dyn, 2000, 23: 709–718

    Article  Google Scholar 

  19. Davidson J B, Lallman F J, Thomas B W. Real-Time Adaptive Control Allocation Applied to a High Performance Aircraft. NASA Langley Technical Report Server, 2001

    Google Scholar 

  20. Peng Z X, Yang Y, Huang L. Effects of input redundancy on time optimal control. Acta Autom Sin, 2010, 37: 222–227

    Article  MathSciNet  Google Scholar 

  21. Duan Z S, Huang L, Jiang Z P. On the effects of redundant control input in discrete systems (in Chinese). J Sys Sci Math Scis, 2012, 10: 1193–1206

    MATH  Google Scholar 

  22. Duan Z S, Huang L, Yang Y. The effects of redundant control inputs in optimal control. Sci China Ser F-Inf Sci, 2009, 52: 1973–1981

    Article  MathSciNet  MATH  Google Scholar 

  23. Xia Y P, Cai C X, Yin M H, et al. Two new upper bounds of the solution for the continuous algebraic Riccati equation and their application. Sci China Inf Sci, 2015, 58: 052201

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang L, Chen M Z Q, Li C. The dual algebraic Riccati equations and the set of all solutions of the discrete-time Riccati equation. Int J Control, 2017, 90: 1371–1388

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu J Z, Wang Y P, Zhang J. New upper matrix bounds with power form for the solution of the continuous coupled algebraic riccati matrix equation. Asian J Control, 2017, 19: 739–747

    Article  MathSciNet  MATH  Google Scholar 

  26. Ulukök Z, Türkmen R. Improved upper bounds for the solution of the continuous algebraic Riccati matrix equation. Appl Math Comput, 2013, 225: 306–317

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu J Z, Zhang J. New upper and lower eigenvalue bounds for the solution of the continuous algebraic riccati equation. Asian J Control, 2014, 16: 284–291

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu J Z, Wang L, Zhang J. New matrix bounds and iterative algorithms for the discrete coupled algebraic Riccati equation. Int J Control, 2017, 90: 2326–2337

    Article  MathSciNet  MATH  Google Scholar 

  29. Lee C H, Liao P S. A simple criterion for robust stabilization design of interval time-delay systems. Adv Mater Res, 2014, 989: 3340–3343

    Article  Google Scholar 

  30. Lee C H, Liao P S. Applied technology in simple robust stabilization design for time-delay systems with parametric uncertainties. Appl Mech Mater, 2014, 540: 368–371

    Article  Google Scholar 

  31. Allwright J. A lower bound for the solution of the algebraic Riccati equation of optimal control and a geometric convergence rate for the Kleinman algorithm. IEEE Trans Autom Control, 1980, 25: 826–829

    Article  MathSciNet  MATH  Google Scholar 

  32. Langholz G. A new lower bound on the cost of optimal regulators. IEEE Trans Autom Control, 1979, 24: 353–354

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu J J, Shi J T, Zhang H S. A leader-follower stochastic linear quadratic differential game with time delay. Sci China Inf Sci, 2018, 61: 112202

    Article  MathSciNet  Google Scholar 

  34. Khot N S, Venkayya V B, Oz H, et al. Optimal structural design with control gain norm constraint. AIAA J, 1988, 26: 604–611

    Article  MathSciNet  Google Scholar 

  35. Gu D W, Petkov P, Konstantinov M M. Robust Control Design with MATLABr. Berlin: Springer, 2005

    Google Scholar 

  36. Zhou K, Doyle J C, Glover K. Robust and Optimal Control. Englewood Cliffs: Prentice-Hall, 1996

    MATH  Google Scholar 

  37. Ostrowski A, Schneider H. Some theorems on the inertia of general matrices. J Math Anal Appl, 1962, 4: 72–84

    Article  MathSciNet  MATH  Google Scholar 

  38. Amir-Moéz A R. Extreme properties of eigenvalues of a Hermitian transformation and singular values of the sum and product of linear transformations. Duke Math J, 1956, 23: 463–476

    Article  MathSciNet  MATH  Google Scholar 

  39. Fan K. Maximum properties and inequalities for the eigenvalues of completely continuous operators. Proc Natl Acad Sci USA, 1951, 37: 760–766

    Article  MathSciNet  MATH  Google Scholar 

  40. Marshall A W, Olkin I, Arnold B C. Inequalities: Theory of Majorization and Its Applications. New York: Academic Press, 1979

    MATH  Google Scholar 

  41. Patel R, Toda M. On norm bounds for algebraic Riccati and Lyapunov equations. IEEE Trans Autom Control, 1978, 23: 87–88

    Article  MathSciNet  MATH  Google Scholar 

  42. Kim S W, Park P G. Upper bounds of the continuous ARE solution. IEICE Trans Fund Electron Commun Comput Sci, 2000, 83: 380–385

    Article  Google Scholar 

  43. Lee C H. A new approach for upper bound estimations of the solution of the continuous Riccati equation. IEEE Trans Autom Control, 2012, 57: 2074–2077

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported in part by National Natural Science Foundation of China (Grant No. 11571292), National Natural Science Foundation for Youths of China (Grant No. 11801164), Key Project of National Natural Science Foundation of China (Grant No. 91430213), General Project of Hunan Provincial Natural Science Foundation (Grant No. 2015JJ2134), and General Project of Hunan Provincial Education Department of China (Grant No. 15C1320).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianzhou Liu or Li Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, L. New solution bounds of the continuous algebraic Riccati equation and their applications in redundant control input systems. Sci. China Inf. Sci. 62, 202201 (2019). https://doi.org/10.1007/s11432-017-9553-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-017-9553-5

Keywords

Navigation