Skip to main content
Log in

Solar system interplanetary communication networks: architectures, technologies and developments

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

With the development of deep space exploration technologies, main space agencies all over the world are working hard to develop the solar system interplanetary communication networks (SSICN). SSICN is a perspective communication networking system characterized by high data rate, high intelligent and perfect interconnection, which could provide the deep-space mission control and scientific application with the convenient, reliable and secure data transmission services. Following the introduction of future deep space exploration prospect, this paper analyzes the similarities and differences for three networks, terrestrial internet, near Earth space networks and SSICN, then discusses the key technologies and research trends of SSICN in details, and finally proposes the suggestions for the construction of future Chinese SSICN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li H T. Principles and Design Methods of Deep Space TT&C System. Beijing: Tsinghua University Press, 2014

    Google Scholar 

  2. Edwards C D, Denis M, Braatz L, et al. Operations concept for a solar system internetwork. In: Proceedings of IEEE Aerospace Conference, Big Sky, 2011. 1–9

    Google Scholar 

  3. CCSDS. Solar System Internetwork (SSI) Architecture. CCSDS 730.1-G-1, 2014

  4. Shen R J. Some thoughts of Chinese integrated space-ground network system. Eng Sci, 2006, 10: 19–30

    Google Scholar 

  5. Huang H M, Chang CW. Architecture research on space-based backbone network of space-ground integrated networks. J CAEIT, 2015, 5: 460–467

    Google Scholar 

  6. Mukherjee J, Ramamurthy B. Communication technologies and architectures for space network and interplanetary internet. IEEE Commun Surv Tut, 2013, 15: 881–897

    Article  Google Scholar 

  7. Fall K, Farrell S. DTN: an architectural retrospective. IEEE J Sel Area Commun, 2008, 26: 828–836

    Article  Google Scholar 

  8. Khabbaz M J, Assi C M, Fawaz W F. Disruption-tolerant networking: a comprehensive survey on recent developments and persisting challenges. IEEE Commu Surv Tut, 2012, 14: 607–640

    Article  Google Scholar 

  9. Kaushal H, Kaddoum G. Optical communication in space: challenges and mitigation techniques. IEEE Commun Sur Tut, 2017, 19: 57–96

    Article  Google Scholar 

  10. ITU-R. Radio Regulations. 2008 ed. 2008. http://www.itu.int/pub/R-REG-RR

  11. CCSDS. Radio Frequency and Modulation Systems. CCSDS 401.0-B, 2016

  12. Anderson J D, Philip A L, Eunice L L, et al. Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration. Phys Rev Lett, 1998, 14: 2858–2861

    Article  Google Scholar 

  13. Ludwig R, Taylor J. DESCANSO Design and Performance Summary Series Article 4: Voyager Telecommunications. Washington: NASA, 2002. 1–6

    Google Scholar 

  14. Korablev O, Trokhimovsky A, Grigoriev A V, et al. Three infrared spectrometers, an atmospheric chemistry suite for the ExoMars 2016 trace gas orbiter. J Appl Remote Sens, 2014, 8: 084983

    Article  Google Scholar 

  15. International Space Exploration Coordination Group. The Global Exploration Roadmap. Washington: NASA, 2013

  16. Lu K F, Qi Z Q, Liu J R, et al. Analyses and reflection of intelligent autonomous technology for Chinese manned deep space exploration. In: Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference, Nanjing, 2016. 1033–1038

    Chapter  Google Scholar 

  17. Zhang H X, Yuan D F, Ma Y B. Cross-layer Design for Wireless Communications — From Principle to Application. Beijing: Posts and Telecom Press, 2010

    Google Scholar 

  18. Wang M Z, Lei B, Ding C B, et al. Technical considerations of construction space-ground integration network. In: Proceedings of the 2nd Space Information Networks Academic Forum, Yinchuan, 2017. 193–198

    Google Scholar 

  19. CCSDS. AOS Space Data Link Protocol. CCSDS 732.0-B-3, 2006

  20. Cui P Y, Dou Q, Gao A. Review of communication blackout problems encountered during mars entry phase. J Astronautics, 2014, 35: 1–12

    Google Scholar 

  21. CCSDS. CCSDS File Delivery Protocol (CFDP). CCSDS 727.0-B-4, 2007

  22. CCSDS. Encapsulation Service. CCSDS 133.1-B-2, 2009

  23. CCSDS. Proximity-1 Space Link Protocol-Data Link Layer. CCSDS 211.0-B-5, 2013

  24. Marchese M. Interplanetary and pervasive communications. IEEE Aerosp Electron Syst Mag, 2011, 2: 12–18

    Article  Google Scholar 

  25. Psaras I, Wood L, Tafazolli R. Delay-/Disruption-Tolerant Networking: State of the Art and Future Challenges. Technical Report, 2010

    Google Scholar 

  26. Cerf V, Burleigh S, Hooke A, et al. Delay-Tolerant Networking Architecture. Network Working Group IETF, 2007. https://tools.ietf.org/html/rfc4838

    Google Scholar 

  27. CCSDS. CCSDS Bundle Protocol Specification. CCSDS 734.2-B-1, 2015

  28. Jiang Y, Li G X, Zhang G X, et al. The hierarchical-cluster topology control strategy of interPlaNetary internet backbone based on libration points. Przegl¸ad Elektrotechniczny, 2012, 4A: 271–276

    Google Scholar 

  29. Younes B, Perko K, Shier J. Space Communications and Navigation (SCaN) Network Architecture Definition Document (ADD) Volume 1: Executive Summary. Washington: NASA, 2014. 2–17

    Google Scholar 

  30. Kato S, Feher K. Correlated Signal Processor. US Patent, 4567602, 1986-01-28

    Google Scholar 

  31. Shi X S, Dang H J, Hong J C, et al. Research on large scale small antenna array for deep space TT&C. In: Proceedings of the 9th Annual Conference of Deep Space Exploration Technology Committee of Chinese Astronautical Society, Hangzhou, 2012. 581–588

    Google Scholar 

  32. Fort D. Array Preliminary Design Review. Pasadena: NASA JPL, 1998

    Google Scholar 

  33. Xu M G, Chai L. Technical status and development suggestion of China’s deep space antenna arraying. Telecommun Eng, 2014, 1: 109–114

    Google Scholar 

  34. Hong J C, Yang W G, Hou X M, et al. Study on downlink antenna array technology and its test verifying. J Acad Eq Command Technol, 2011, 1: 58–62

    Google Scholar 

  35. Gallager R G. Low-density parity-check codes. IRE Trans Inf Theory, 1962, 1: 21–28

    Article  MathSciNet  MATH  Google Scholar 

  36. MacKay JCD. Good error-correcting codes based on very sparse matrices. IEEE Trans Inf Theory, 1999, 2: 399–431

    Article  MathSciNet  MATH  Google Scholar 

  37. Chung S Y, Forney G D, Richardson T J, et al. On the design of low-density parity-check codes within 0.0045 dB of the shannon limit. IEEE Commun Lett, 2001, 2: 58–60

    Article  Google Scholar 

  38. CCSDS. Low Density Parity Check Codes for Use in Near-Earth and Deep Space Applications. CCSDS 131.1-O-1, 2006

  39. CCSDS. Low Density Parity Check Codes for Use in Near-Earth and Deep Space Applications. CCSDS 131.1-O-2, 2007

  40. CCSDS. TM Synchronization and Channel Coding. CCSDS 131.0-B-2, 2011

  41. CCSDS. TM Channel Coding Profiles. CCSDS 131.4-M-1, 2011

  42. CCSDS. TM Synchronization and Channel Coding-Summary of Concept and Rationale. CCSDS 130.1-G-2, 2012

  43. Arikan E. Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans Inf Theory, 2009, 55: 3051–3073

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang W Z, Liu T. Research status and prospect of polar codes. Inf Commun, 2016, 4: 218–219

    Google Scholar 

  45. Luby M. LT Codes. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02), Vancouver, 2002. 271–280

    Chapter  Google Scholar 

  46. Shokrollahi A. Raptor codes. IEEE Trans Inf Theory, 2006, 52: 2551–2567

    Article  MathSciNet  MATH  Google Scholar 

  47. Perry J, Iannucci P A, Fleming K E, et al. Spinal codes. In: Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, Helsinki, 2012. 49–60

    Google Scholar 

  48. Viswanath A, Gopal P, Jain V K, et al. Performance enhancement by aperture averaging in terrestrial and satellite free space optical links. IET Optoelectron, 2016, 10: 111–117

    Article  Google Scholar 

  49. Xu F, Khalighi M A, Causse P, et al. Performance of coded time-diversity free-space optical links. In: Proceedings of the 24th Biennial Symposium on Communications, Kingston, 2008. 146–149

    Google Scholar 

  50. Safari M, Uysal M. Relay-assisted free-space optical communication. IEEE Trans Wirel Commun, 2008, 7: 5441–5449

    Article  Google Scholar 

  51. Barbier P R, Rush D W, Plett M L, et al. Performance improvement of a laser communication link incorporating adaptive optics. In: Proceedings of Conference on Artificial Turbulence for Imaging and Wave Propagation, San Diego, 1998. 93–102

    Chapter  Google Scholar 

  52. Viswanath A, Kaushal H, Jain V K, et al. Evaluation of performance of ground to satellite free space optical link under turbulence conditions for different intensity. Proc SPIE, 2014, 8971: 897106

    Article  Google Scholar 

  53. Moision B, Hamkins J. Deep-Space Optical Communications Downlink Budget: Modulation and Coding. IPN Progress Report 42-154, 2003

    Google Scholar 

  54. Wree C, Collier C P, Lane S, et al. Ten Gb/s optically pre-amplified RZ-DPSK for FSO communications systems with very large link losses. Proc SPIE, 2008, 7091: 709103

    Article  Google Scholar 

  55. Barsoum M F, Moision B, Fitz M. Iterative coded pulse-position-modulation for deep-space optical communications. In: Proceedings of IEEE Information Theory Workshop, Tahoe City, 2007. 66–71

    Google Scholar 

  56. Chen H J, Bishop R, Agrawal B. Payload pointing and active vibration isolation using hexapod platforms. In: Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, 2003. 1643–1661

    Google Scholar 

  57. Gagliardi R M, Karp S. Optical Communications. New York: Wiley, 1976

    Google Scholar 

  58. Chan V W S. Intersatellite optical heterodyne communication systems. Opt Space Commun, 1989, 1: 169–186

    Google Scholar 

  59. Stotts L B, Andrews L C, Cherry P C, et al. Hybrid optical RF airborne communications. Proc IEEE, 2009, 97: 1109–1127

    Article  Google Scholar 

  60. Edwards C D. Relay communications for Mars exploration. Int J Satell Commun Netw, 2007, 25: 111–145

    Article  Google Scholar 

  61. Taylor J, Cheung K, Wong C. DESCANSO Design and Performance Summary Series Article 1: Mars Global Surveyor Telecommunications. Pasadena: NASA JPL, 2001

    Google Scholar 

  62. Makovsky A, Barbieri A, Tung R. DESCANSO Design and Performance Summary Series Article 6: Odyssey Telecommunications. Pasadena: NASA JPL, 2002

    Google Scholar 

  63. Taylor J, Lee D K, Shambayati S. DESCANSO Design and Performance Summary Series: Mars Reconnaissance Orbiter Telecommunications. Pasadena: NASA JPL, 2006

    Google Scholar 

  64. Chicarro A, Martin P, Trautner R. The Mars express mission: an overview. Mars Express Sci Payload, 2004, 1240: 3–13

    Google Scholar 

  65. Wan P, Zhang S L, Song S J. Study on the enhancement of contact graph routing in space DTN networks based on the network coding. J Spacecr TT&C Technol, 2016, 5: 400–408

    Google Scholar 

  66. Wan P, Chen S, Yu T, et al. A hybrid multiple copy routing algorithm in space delay-tolerant networks. Sci China Inf Sci, 2017, 60: 042301

    Article  Google Scholar 

  67. Shah R C, Roy S, Jain S, et al. Data mules: modeling and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Netw, 2003, 1: 215–233

    Article  Google Scholar 

  68. Birrane E, Burleigh S, Kasch N. Analysis of the contact graph routing algorithm: bounding interplanetary paths. Acta Astronaut, 2012, 75: 108–119

    Article  Google Scholar 

  69. Mundur P, Seligman M, Lee G. Epidemic routing with immunity in delay tolerant networks. In: Proceedings of IEEE Military Communications Conference, San Diego, 2008. 1–7

    Google Scholar 

  70. Spyropoulos T, Psounis K, Raghavendra C S. Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In: Proceedings of the 2005 ACM SIGCOMMWorkshop on Delay-Tolerant Networking, Philadelphia, 2005. 252–259

    Chapter  Google Scholar 

  71. Widmer J, Le Boudec J Y. Network coding for efficient communication in extreme networks. In: Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking, Philadelphia, 2005. 284–291

    Chapter  Google Scholar 

  72. Spyropoulos T, Psounis K, Raghavendra C S. Efficient routing in intermittently connected mobile networks: the single-copy case. IEEE/ACM Trans Netw, 2008, 16: 63–76

    Article  Google Scholar 

  73. Lindgren A, Doria A, Schelen O. Probabilistic routing in intermittently connected networks. In: Service Assurance with Partial and Intermittent Resources. Berlin: Springer, 2004. 239–254

    Chapter  Google Scholar 

  74. Sabbagh A, Wang R H, Zhao K L, et al. Bundle protocol over highly asymmetric deep-space channels. IEEE Trans Wirel Commun, 2017, 16: 2478–2489

    Article  Google Scholar 

  75. Zhao K L, Wang R H, Burleigh S C, et al. Performance of bundle protocol for deep-space communications. IEEE Trans Aerosp Electron Syst, 2016, 52: 2347–2361

    Article  Google Scholar 

  76. Jiao J, Wang R H, Burleigh S C, et al. Reliable deep-space file transfers: how data transfer can be ensured within a single round-trip interval. IEEE Veh Technol Mag, 2017, 12: 86–94

    Article  Google Scholar 

  77. Shi L L, Jiao J, Sabbagh A, et al. Integration of Reed-Solomon codes to Licklider transmission protocol (LTP) for space DTN. IEEE Aerosp Electron Syst Mag, 2017, 32: 48–55

    Article  Google Scholar 

  78. Zhao K L, Wang R H, Burleigh S C, et al. Modeling memory-variation dynamics for the licklider transmission protocol in deep-space communications. IEEE Trans Aerosp Electron Syst, 2015, 51: 2510–2524

    Article  Google Scholar 

  79. Hamkins J, Simon M K. Autonomous Software-Defined Radio Receivers for Deep Space Applications. Hoboken: John Wiley & Sons, 2006

    Book  Google Scholar 

  80. Zhang P, Feng Z Y. Cognitive Radio Network. Beijing: Science Press, 2010. 2–12

    Book  Google Scholar 

  81. Akyildiz I F, Akan O B, Chen C, et al. InterPlaNetary internet: state-of-the-art and research challenges. Comput Netw, 2003, 43: 75–112

    Article  MATH  Google Scholar 

  82. Sheikh S I. The use of variable celestial X-ray sources for spacecraft navigation. Dissertation for Ph.D. Degree. Washington: University of Maryland, College Park, 2005

    Google Scholar 

  83. Richter G W, Matzner R A. Second-order contributions to gravitational deflection of light in the parametrized post- Newtonian formalism. Phys Rev D, 1982, 26: 1219–1224

    Article  Google Scholar 

  84. Seidelmann P K. Explanatory Supplement to the Astronomical Almanac. Sausalito: University Science Books, 1992. 95–198

    Google Scholar 

  85. Sun S M. Study on autonomous navigation method of spacecraft based on X-ray pulsars. Dissertation for Ph.D. Degree. Changsha: National University of Defense Technology, 2011

    Google Scholar 

  86. Brumberg V A, Kopejkin S M. Relativistic time scales in the solar system. Celestial Mech Dyn Astronomy, 1990, 48: 23–44

    Article  MATH  Google Scholar 

  87. IEEE Instrumentation and Measurement Society. IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems. NY 10016-5997, 2008

  88. Yang J, Guo Y, Cheng Z, et al. Space time protocol based on IEEE1588. In: Proceedings of the 10th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA), Krakow, 2015. 359–363

    Google Scholar 

  89. Cheng Z, He L, Zhao J, et al. A security enhanced IEEE1588 protocol for deep-space environment. In: Proceedings of the 9th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Guangdong, 2014. 9–13

    Google Scholar 

  90. Re E, Di Cintio A, Busca G, et al. Novel time synchronization techniques for deep space probes. In: Proceedings of International Frequency Control Symposium, Joint with the 22nd European Frequency and Time Forum, Besancon, 2009. 205–210

    Google Scholar 

  91. Zhan Y F, Wan P. Thoughts of chinese development strategy for deep space exploration. In: Chinese Development Strategy for Deep Space Exploration Workshop. Beijing: Tsinghua University, Space Center, 2016. 7–14

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 61671263, 61271265), and Tsinghua University Independent Scientific Research Project (Grant No. 20161080057). The authors thank professor Gengxin ZHANG with the Army Engineering University of PLA for his helpful discussions and insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yafeng Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, P., Zhan, Y. & Pan, X. Solar system interplanetary communication networks: architectures, technologies and developments. Sci. China Inf. Sci. 61, 040302 (2018). https://doi.org/10.1007/s11432-017-9346-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-017-9346-1

Keywords

Navigation