Skip to main content
Log in

An overview of transmission theory and techniques of large-scale antenna systems for 5G wireless communications

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

To meet the future demand for huge traffic volume of wireless data service, the research on the fifth generation (5G) mobile communication systems has been undertaken in recent years. It is expected that the spectral and energy efficiencies in 5G mobile communication systems should be ten-fold higher than the ones in the fourth generation (4G) mobile communication systems. Therefore, it is important to further exploit the potential of spatial multiplexing of multiple antennas. In the last twenty years, multiple-input multiple-output (MIMO) antenna techniques have been considered as the key techniques to increase the capacity of wireless communication systems. When a large-scale antenna array (which is also called massive MIMO) is equipped in a base-station, or a large number of distributed antennas (which is also called large-scale distributed MIMO) are deployed, the spectral and energy efficiencies can be further improved by using spatial domain multiple access. This paper provides an overview of massive MIMO and large-scale distributed MIMO systems, including spectral efficiency analysis, channel state information (CSI) acquisition, wireless transmission technology, and resource allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ericsson. Ericsson mobility report. http://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf. 2015

  2. You X H, Pan Z W, Gao X Q, et al. The 5G mobile communication: the development trends and its emerging key techniques (in Chinese). Sci Sin Inform, 2014, 44: 551–563

    Google Scholar 

  3. Ma Z, Zhang Z Q, Ding Z G, et al. Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives. Sci China Inf Sci, 2015, 58: 041301

    Google Scholar 

  4. Paulraj A J, Gore D A, Nabar R U, et al. An overview of MIMO communications-a key to gigabit wireless. Proc IEEE, 2004, 2: 198–218

    Article  Google Scholar 

  5. Marzetta T L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun, 2010, 11: 3590–3600

    Article  Google Scholar 

  6. You X H, Wang D M, Sheng B, et al. Cooperative distributed antenna systems for mobile communications. IEEE Wirel Commun, 2010, 17: 35–43

    Article  Google Scholar 

  7. Zhu H. Performance comparison between distributed antenna and microcellular systems. IEEE J Sel Area Commun, 2011, 29: 1151–1163

    Article  Google Scholar 

  8. Wang J, Zhu H, Gomes N. Distributed antenna systems for mobile communications in high speed trains. IEEE J Sel Area Commun, 2012, 30: 675–683

    Article  Google Scholar 

  9. Osman H, Zhu H, Toumpakaris D, et al. Achievable rate evaluation of in-building distributed antenna systems. IEEE Trans Wirel Commun, 2013, 12: 3510–3521

    Article  Google Scholar 

  10. Dai L. A comparative study on uplink sum capacity with co-located and distributed antennas. IEEE J Sel Area Commun, 2011, 29: 1200–1213

    Article  Google Scholar 

  11. Wang J, Dai L. Asymptotic rate analysis of downlink multi-user systems with co-located and distributed antennas. IEEE Trans Wirel Commun, 2015, 14: 3046–3058

    Article  Google Scholar 

  12. Wang D, Wang J, You X, et al. Spectral efficiency of distributed MIMO systems. IEEE J Sel Area Commun, 2013, 10: 2112–2127

    Article  Google Scholar 

  13. Huh H, Caire G, Papadopoulos H C, et al. Achieving massive MIMO spectral efficiency with a not-so-large number of antennas. IEEE Trans Wirel Commun, 2012, 9: 3226–3239

    Article  Google Scholar 

  14. Wang D M, Zhao Z L, Huang Y Q, et al. Large-scale multi-user distributed antenna system for 5G wireless communications. In: Proceedings of IEEE 81st Vehicular Technology Conference Spring, Glasgow, 2015. 1–5

    Google Scholar 

  15. Tulino A M, Verdu S. Random matrix theory and wireless communications. In: Foundations and Trends in Communications and Information Theory. Norwell: Now Publishers Inc, 2004

    Google Scholar 

  16. Lu A, Gao X Q, Xiao C S. A free deterministic equivalent for the capacity of MIMO MAC with distributed antenna sets. In: Proceedings of IEEE International Conference on Communications, London, 2015. 1751–1756

    Google Scholar 

  17. Zhang J, Wen C K, Jin S, et al. On capacity of large-scale MIMO multiple access channels with distributed sets of correlated antennas. IEEE J Sel Area Commun, 2013, 2: 133–148

    Article  Google Scholar 

  18. Ngo H Q, Larsson E G, Marzetta T L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun, 2013, 4: 1436–1449

    Google Scholar 

  19. Hoydis J, Brinkz S, Debbah M. Massive MIMO in the UL/DL of cellular networks: how many antennas do we need. IEEE J Sel Area Commun, 2013, 2: 160–171

    Article  Google Scholar 

  20. Wang D M, Ji C, Gao X Q, et al. Uplink sum-rate analysis of multi-cell multi-user massive MIMO system. In: Proceedings of IEEE International Conference on Communications, Budapest, 2013. 5404–5408

    Google Scholar 

  21. Wang D M, Ji C, Sun S H, et al. Spectral efficiency of multicell multi-user DAS with pilot contamination. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, 2013. 3208–3212

    Google Scholar 

  22. Li J M, Wang D M, Zhu P C, et al. Downlink spectral efficiency of multi-cell multi-user large-scale DAS with pilot contamination. In: Proceedings of IEEE International Conference on Communications, London, 2015. 2011–2016

    Google Scholar 

  23. Andrews J, Baccelli F, Ganti R. A tractable approach to coverage and rate in cellular networks. IEEE Trans Commun, 2011, 11: 3122–3134

    Article  Google Scholar 

  24. Baccelli F, Giovanidis A. A stochastic geometry framework for analyzing pairwise-cooperative cellular networks. IEEE Trans Wirel Commun, 2015, 2: 794–808

    Article  Google Scholar 

  25. Fei Z S, Ding H C, Xing C W, et al. Performance analysis for range expansion in heterogeneous networks. Sci China Inf Sci, 2014, 57: 082305

    Google Scholar 

  26. Lin Y, Yu W. Ergodic capacity analysis of downlink distributed antenna systems using stochastic geometry. In: Proceedings of IEEE International Conference on Communications, Budapest, 2013. 3338–3343

    Google Scholar 

  27. Bai T Y, Heath R W. Analyzing uplink SIR and rate in massive MIMO systems using stochastic geometry. arXiv:1510.02538. 2015

    Google Scholar 

  28. Wang D, You X, Wang J, et al. Spectral efficiency of distributed MIMO cellular systems in a composite fading channel. In: Proceedings of IEEE International Conference on Communications, Beijing, 2008. 1259–1264

    Google Scholar 

  29. Yang A, Jing Y, Xing C, et al. Performance analysis and location optimization for massive MIMO systems with circularly distributed antennas. IEEE Trans Wirel Commun, 2015, 10: 5659–5671

    Article  Google Scholar 

  30. Aggarwal R, Koksal C E, Schniter P. On the design of large scale wireless systems. IEEE J Sel Area Commun, 2013, 2: 215–225

    Article  Google Scholar 

  31. Xin Y, Wang D, Li J. Area spectral efficiency and area energy efficiency of massive MIMO cellular systems. IEEE Trans Veh Tech, in press. doi: 10.1109/TVT.2015.2436896

  32. Bjornson E, Hoydis J, Kountouris M, et al. Massive MIMO systems with non-ideal hardware: energy efficiency, estimation, and capacity limits. IEEE Trans Inf Theory, 2015, 11: 7112–7139

    MathSciNet  Google Scholar 

  33. Gustavsson U, Sanchez-Perez C, Eriksson T, et al. On the impact of hardware impairments on massive MIMO. In: Globecom Workshops (GC Wkshps), Austin, 2014. 294–300

    Google Scholar 

  34. Fernandes F, Ashikhmin A, Marzetta T L. Inter-cell interference in non-cooperative TDD large scale antenna systems. IEEE J Sel Area Commun, 2013, 2: 192–201

    Article  Google Scholar 

  35. Zhang H, Zheng X, Xu W, et al. On massive MIMO performance with semi-orthogonal pilot-assisted channel estimation. EURASIP J Wirel Commun Netw, in press. doi: 10.1186/1687-1499-2014-220

  36. Jin S, Li M M, Huang Y M, et al. Pilot scheduling schemes for multi-cell massive multiple-input-multiple-output transmission. IET Commun, 2015, 9: 689–700

    Article  Google Scholar 

  37. You L, Gao X, Xia X G, et al. Pilot reuse for massive MIMO transmission over spatially correlated Rayleigh fading channels. IEEE Trans Wirel Commun, 2015, 6: 3352–3366

    Article  Google Scholar 

  38. Yin H, Gesbert D, Filippou M, et al. A coordinated approach to channel estimation in large-scale multiple-antenna systems. IEEE J Sel Area Commun, 2013, 2: 264–273

    Article  Google Scholar 

  39. Chen Z, Yang C. Pilot decontamination in massive MIMO systems: exploiting channel sparsity with pilot assignment. In: Proceedings of IEEE Global Conference on Signal and Information Processing (GlobalSIP), Atlanta, 2014. 637–641

    Google Scholar 

  40. Gao Z, Dai L, Wang Z. Structured compressive sensing based superimposed pilot design in downlink large-scale MIMO systems. Electron Lett, 2014, 12: 896–898

    Article  Google Scholar 

  41. Yang Y, Bai B, Chen W. How much spectrum can be reused in 5G cellular networks a matrix graph approach. arXiv: 1401.4750. 2014

  42. Atzeni I, Arnau J, Debbah M. Fractional pilot reuse in massive MIMO systems. arXiv:1503.07321. 2015

    Book  Google Scholar 

  43. Choi J, Chance Z, Love D J, et al. Noncoherent trellis coded quantization: a practical limited feedback technique for massive MIMO systems. IEEE Trans Commun, 2013, 12: 5016–5029

    Article  Google Scholar 

  44. Noh S, Zoltowski M D, Sung Y, et al. Pilot beam pattern design for channel estimation. IEEE J Sel Topics Signal Process, 2014, 5: 787–801

    Article  Google Scholar 

  45. Choi J, Love D, Bidigare P. Downlink training techniques for FDD massive MIMO systems: open-loop and closed-loop training with memory. IEEE J Sel Topics Signal Process, 2014, 8: 802–814

    Article  Google Scholar 

  46. You L, Gao X, Swindlehurst A L, et al. Channel acquisition for massive MIMO-OFDM with adjustable phase shift pilots. IEEE Trans Signal Process, 2015, 6: 1461–1476

    MathSciNet  Google Scholar 

  47. Adeogun R O. Channel prediction for mobile MIMO wireless communication systems. Dissertation for Ph.D. Degree. Wellington: Victoria University of Wellington, 2015. 1–313

    Google Scholar 

  48. Huang M, Chen X, Zhou S, et al. Low-complexity subspace tracking based channel estimation method for OFDM systems in time-varying channels. In: Proceedings of IEEE International Conference on Communications (ICC), Istanbul, 2006. 4618–4623

    Google Scholar 

  49. Simeone O, Bar-Ness Y, Spagnolini U. Pilot-based channel estimation for OFDM systems by tracking the delaysubspace. IEEE Trans Wirel Commun, 2004, 1: 315–325

    Article  Google Scholar 

  50. Zhu Y, Liu L, Wang A, et al. DoA estimation and capacity analysis for 2D active massive MIMO systems. In: Proceedings of IEEE International Conference on Communications, Budapest, 2013. 4630–4634

    Google Scholar 

  51. Qi C, Huang Y, Jin S, et al. Sparse channel estimation based on compressed sensing for massive MIMO systems. In: Proceedings of IEEE International Conference on Communications (ICC), London, 2015. 4558–4563

    Google Scholar 

  52. Masood M, Afify L H, Al-Naffouri T Y. Efficient coordinated recovery of sparse channels in massive MIMO. IEEE Trans Signal Process, 2015, 1: 104–118

    Article  MathSciNet  Google Scholar 

  53. Masood M, Al-Naffouri T Y. Sparse reconstruction using distribution agnostic Bayesian matching pursuit. IEEE Trans Signal Process, 2013, 21: 5298–5309

    Article  Google Scholar 

  54. Ngo B Q, Larsson E G. EVD-based channel estimation in multicell multiuser MIMO systems with very large antenna arrays. In: Proceedings of IEEE International Conference on Acoust, Speech, Signal Processing, Kyoto, 2012. 3249–3252

    Google Scholar 

  55. Muller R F, Cottatellucci L, Vehkaper M. Blind pilot decontamination. IEEE J Sel Topics Signal Process, 2014, 5: 773–786

    Article  Google Scholar 

  56. Ma J, Li P. Data-aided channel estimation in large antenna systems. IEEE Trans Signal Process, 2014, 12: 3111–3124

    MathSciNet  Google Scholar 

  57. Rao X, Lau V K N. Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems. IEEE Trans Signal Process, 2014, 12: 3261–3271

    MathSciNet  Google Scholar 

  58. Gao Z, Dai L, Wang Z, et al. Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO. IEEE Trans Signal Process, 2015, 23: 6169–6183

    Article  MathSciNet  Google Scholar 

  59. Chen K F, Liu Y C, Su Y T. On composite channel estimation in wireless massive MIMO systems. In: Proceedings of IEEE Globecom Workshops, Atlanta, 2013. 135–139

    Google Scholar 

  60. Wei H, Wang D M, Zhu H L, et al. Mutual coupling calibration for multiuser massive MIMO systems. IEEE Trans Wirel Commun, 2016, 15: 606–619

    Article  Google Scholar 

  61. Zhang W, Ren H, Pan C, et al. Large-scale antenna systems with UL/DL hardware mismatch: achievable rates analysis and calibration. IEEE Trans Commun, 2015, 4: 1216–1229

    Article  Google Scholar 

  62. Wei H, Wang D M, Wang J Z, et al. Impact of RF mismatches on the performance of massive MIMO systems with ZF precoding. Sci China Inf Sci, 2016, 59: 022302

    Article  Google Scholar 

  63. Nishimori K, Hiraguri T, Ogawa T, et al. Effectiveness of implicit beamforming using calibration technique in massive MIMO system. In: Proceedings of IEEE International Workshop on Electromagnetics (iWEM), Sapporo, 2014. 117–118

    Google Scholar 

  64. Kaltenberger F, Jiang H, Guillaud M. Relative channel reciprocity calibration in MIMO/TDD systems. In: Proceedings of IEEE Future Network and Mobile Summit, Florence, 2010. 1–10

    Google Scholar 

  65. Shepard C, Yu H, Anand N. Argos: practical many-antenna base stations. In: Proceedings of the 18th annual International Conference on Mobile Computing and Networking, Istanbul, 2012. 53–64

    Google Scholar 

  66. Rogalin R, Bursalioglu O Y, Papadopoulos H C. Hardware-impairment compensation for enabling distributed largescale MIMO. In: Proceedings of IEEE Information Theory and Applications Workshop (ITA), San Diego, 2013. 1–10

    Google Scholar 

  67. Rogalin R, Bursalioglu O Y, Papadopoulos H, et al. Scalable synchronization and reciprocity calibration for distributed multiuser MIMO. IEEE Trans Wirel Commun, 2014, 13: 1815–1831

    Article  Google Scholar 

  68. Wei H, Wang D M, Wang J Z, et al. TDD reciprocity calibration for multi-user massive MIMO systems with iterative coordinate descent. Sci China Inf Sci, in press. doi: 10.1007/s11432-015-5441-4

  69. Rahul H S, Kumar S, Katabi D. JMB: scaling wireless capacity with user demands. In: Proceedings of ACMSIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. New York: ACM, 2012. 235–246

    Google Scholar 

  70. Yu W. Competition and cooperation in multiuser communication environments. Dissertation for Ph.D. Degree. Stanford: Stanford University, 2002

    Google Scholar 

  71. Kammoun A, Muller A, Bjornson E, et al. Linear precoding based on polynomial expansion: large-scale multi-cell MIMO systems. IEEE J Sel Topics Signal Process, 2014, 8: 861–875

    Article  Google Scholar 

  72. Huang Y, Tang W, Li J, et al. On the performance of iterative receivers in massive MIMO systems with pilot contamination. In: proceedings of IEEE 9th Conference on Industrial Electronics and Applications (ICIEA), Hangzhou, 2014. 52–57

    Google Scholar 

  73. Wen C K, Chen J C, Wong K K, et al. Message passing algorithm for distributed downlink regularized zero-forcing beamforming with cooperative base stations. IEEE Trans Wirel Commun, 2014, 13: 2920–2930

    Article  Google Scholar 

  74. Sun C, Gao X, Jin S, et al. Beam division multiple access transmission for massive MIMO communications. IEEE Trans Commun, 2015, 6: 2170–2184

    Article  Google Scholar 

  75. Nam J, Ahn J Y, Caire G. Joint spatial division and multiplexing–the large-scale array regime. IEEE Trans Inf Theory, 2013, 10: 6441–6463

    MathSciNet  Google Scholar 

  76. Narasimhan T L, Chockalingam A. Channel hardening-exploiting message passing (CHEMP) receiver in large-scale MIMO systems. IEEE J Sel Topics Signal Process, 2014, 8: 847–860

    Article  Google Scholar 

  77. Dai L L, Gao X Y, Su X, et al. Low-complexity soft-output signal detection based on Gauss-Seidel method for uplink multi-user large-scale MIMO systems. IEEE Trans Veh Tech, 2014, 64: 4839–4845

    Article  Google Scholar 

  78. Fadlallah Y, Aissa A, Amis K, et al. New iterative detector of MIMO transmission using sparse decomposition. IEEE Trans Veh Tech, 2014, 64: 3458–3464

    Article  Google Scholar 

  79. Cao J, Wang D, Li J, et al. Uplink sum-rate analysis of massive MIMO system with pilot contamination and CSI delay. Wirel Personal Commun, 2014, 1: 297–312

    Article  Google Scholar 

  80. Zhang W, Lamare R C, Pan C, et al. Widely linear block diagonalization type precoding in massive MIMO systems with IQ imbalance. In: Proceedings of IEEE International Conference on Communications, London, 2015. 1789–1794

    Google Scholar 

  81. Han S, Yang C, Wang G, et al. Coordinated multipoint transmission strategies for TDD systems with non-ideal channel reciprocity. IEEE Trans Commun, 2013, 10: 4256–4270

    Article  Google Scholar 

  82. Fan L, Jin S, Wen C K, et al. Uplink achievable rate for massive MIMO systems with low-resolution ADC. IEEE Commun Lett, 2015, 19: 2186–2189

    Article  Google Scholar 

  83. Zhang T C, Wen C K, Jin S, et al. Mixed-ADC massiveMIMO detectors: performance analysis and design optimization. arXiv:1509.07950. 2015

  84. Zhu H, Wang J. Chunk-based resource allocation in OFDMA systems-part I: chunk allocation. IEEE Trans Commun, 2009, 9: 2734–2744

    Google Scholar 

  85. Zhu H, Wang J. Chunk-based resource allocation in OFDMA Systems-Part II: joint chunk, power and bit allocation. IEEE Trans Commun, 2012, 2: 499–509

    Article  Google Scholar 

  86. Zhu H, Karachontzitis S, Toumpakaris D. Low-complexity resource allocation and its application to distributed antenna systems. IEEE Wirel Commun, 2010, 3: 44–50

    Article  Google Scholar 

  87. Nam J Y, Adhikary A, Ahn J Y, et al. Joint spatial division and multiplexing: opportunistic beamforming, user grouping and simplified downlink scheduling. IEEE J Sel Topics Signal Process, 2014, 8: 876–890

    Article  Google Scholar 

  88. Xu Y, Yue G, Mao S. User grouping for massive MIMO in FDD systems: new design methods and analysis. IEEE Access, 2014, 2: 947–959

    Article  Google Scholar 

  89. Xu X D, Wu C L, Tao X F, et al. Maximum utility principle access control for beyond 3G mobile system. Wirel Commun Mobile Comput, 2007, 7: 951–959

    Article  Google Scholar 

  90. Dai L. An uplink capacity analysis of the distributed antenna system (DAS): from cellular das to das with virtual cells. IEEE Trans Wirel Commun, 2014, 13: 2717–2731

    Article  Google Scholar 

  91. Dai B B, Yu W. Sparse beamforming and user-centric clustering for downlink cloud radio access network. IEEE Access, 2014, 2: 1326–1339

    Article  Google Scholar 

  92. Liu J, Wang D. An improved dynamic clustering algorithm for multi-user distributed antenna system. In: Proceedings of IEEE International Conference on Wireless Communications Signal Processing (WCSP), Nanjing, 2009. 1–5

    Google Scholar 

  93. Fan C, Zhang Y J, Yuan X. Dynamic nested clustering for parallel PHY-layer processing in cloud-RANs. IEEE Trans Wirel Commun, 2016, 15: 1881–1894

    Article  Google Scholar 

  94. Ratnam V V, Caire G, Molisch A F. Capacity analysis of interlaced clustering in a distributed antenna system. In: Proceedings of IEEE International Conference on Communications (ICC), London, 2015. 578–582

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohu You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Zhang, Y., Wei, H. et al. An overview of transmission theory and techniques of large-scale antenna systems for 5G wireless communications. Sci. China Inf. Sci. 59, 081301 (2016). https://doi.org/10.1007/s11432-016-0278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-016-0278-5

Keywords

Navigation