Skip to main content
Log in

High power devices in wide bandgap semiconductors

  • Special Issue
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC) semiconductor devices for high power applications are now commercially available as discrete devices. Recently Schottky diodes are offered by both USA and Europe based companies. Active switching devices such as bipolar junction transistors (BJTs), field effect transistors (JFETs and MOSFETs) are now reaching the market. The interest is rapidly growing for these devices in high power and high temperature applications. The main advantages of wide bandgap semiconductors are their very high critical electric field capability. From a power device perspective the high critical field strength can be used to design switching devices with much lower losses than conventional silicon based devices both for on-state losses and reduced switching losses. This paper will review the current state of the art in active switching device performance for both SiC and GaN devices. SiC material quality and epitaxy processes have greatly improved and degradation free 100 mm wafers are readily available. This is encouraging since also bipolar devices now are attractive with good long term stability. SiC wafers still have a too high cost to be fully cost efficient. However, the SiC wafer roadmap looks very favorable as volume production takes off. For GaN materials the main application area is geared towards the lower power rating level up to 1 kV on mostly lateral FET designs. The cost advantage is interesting for GaN when grown on Si substrates to bring down costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baliga B J. Silicon Carbide Power Devices. New Jersey: World Scientific Publishing Co. Pte. Ltd, 2005

    Google Scholar 

  2. Östling M, Koo S M, Domeij M, et al. SiC Device Technologies. Encyclopedia of RF and Microwave Engineering. New Jersey: John Wiley & Sons, Inc, 2005. 4613–4619

    Google Scholar 

  3. Östling M, Domeij M, Zaring C, et al. SiC bipolar power transistors — design and technology issues for ultimate performance. In: Saddow S E, Sanchez E, Zhao F, eds. Silicon Carbide 2010-Materials, Processing, and Devices, Oslo, 2010. Warrendale Mater Res Soc Symp Proc, 2010. 1246: B08–01

  4. Ghandi R, Lee H S, Domeij M, et al. Fabrication of 2700-V 12 mΩ·cm2 non Ion-implanted 4H-SiC BJTs with commonemitter current gain of 50. IEEE Electron Dev Lett, 2008, 29: 1135–1137

    Article  Google Scholar 

  5. Lee H S, Domeij M, Zetterling C M, et al. 1200-V 5.2-mΩ·cm2 4H-SiC BJTs with a high common-emitter current gain. IEEE Electron Dev Lett, 2007, 28: 1007–1009

    Article  Google Scholar 

  6. Zhang J, Alexandrov P, Zhao J H. Development of high temperature lateral HV and LV JFETs in 4H-SiC. In: Materials Science Forum, Otsu, Japan, 2009. 600–603: 1155–1158

    Article  Google Scholar 

  7. Noborio M, Suda J, Kimoto T. 1580-V-40-mΩ·cm2 double-result MOSFETs on 4H-SiC (0001-). IEEE Electron Dev Lett, 2009, 30: 831–833

    Article  Google Scholar 

  8. Cheng L, Sankin I, Bondarenko V, et al. High-temperature operation of 50 A (1600 A/cm2), 600 V 4H-SiC verti-calchannel JFETs for high-power applications. Mater Sci Forum, 2009, 600–603: 1055–1058

    Article  Google Scholar 

  9. Veliadis V, McNutt T, Snook M, et al. A 1680-V (at 1 mA/cm2) 54-A (at 780 W/cm2) normally on 4H-SiC JFET with 0.143 cm2 active area. IEEE Electron Dev Lett, 2008, 29: 1132–1134

    Article  Google Scholar 

  10. Jonas C, Cappel C, Burk A, et al. 1200 V 4H-SiC bipolar junction transistors with a record β of 70. J Electron Mater, 2008, 37: 662–665

    Article  Google Scholar 

  11. Li Y, Alexandrov P, Zhao J H. 1.88 mΩ·cm2 1650-V normally on 4H-SiC TI-VJFET. IEEE Trans Electron Dev, 2008, 55: 1880–1886

    Article  Google Scholar 

  12. Veliadis V, Snook M, McNutt T, et al. A 2055-V (at 0.7 mA/cm2) normally on 4H-SiC JFET with 6.8-mm2 active area and blocking-voltage capability reaching the material limit. IEEE Electron Dev Lett, 2008, 29: 1325–1327

    Article  Google Scholar 

  13. Ritenour A, Bondarenko V, Kelley R, et al. Electrical characterization of large area 800 V enhancement-mode SiC VJFETs for high temperature applications. In: Materials Science Forum, Barcelona, 2009. 615–617: 715–718

    Article  Google Scholar 

  14. Hull B A, Jonas C, Ryu S H, et al. Performance of 60 A, 1200 V 4H-SiC DMOSFETs. In: Materials Science Forum, Barcelona, 2009. 615–617: 749–752

    Article  Google Scholar 

  15. Nonaka K, Horiuchi A, Negoro Y, et al. A new high current gain 4H-SiC bipolar junction transistor with suppressed surface recombination structure: SSR-BJT. In: Materials Science Forum, Barcelona, 2009. 615–617: 821–824

    Article  Google Scholar 

  16. Zhang J, Fursin L, Li X, et al. 4H-SiC bipolar junction transistors with graded base doping profile. In: Materals Science Forum, Barcelona, 2009. 615–617: 829–832

    Article  Google Scholar 

  17. Sheridan D C, Ritenour A, Bondarenko V, et al. Record 2.8mΩ·cm2 1.9 kV enhancement-mode SiC VJFETs. In: Proceeding of 21 st International Symposium on Power Semiconductor Devices & IC’s, Orlando, 2009. 335–338

  18. Zhang Q, Burk A, Husna F, et al. 4H-SiC bipolar junction transistors: From research to development-a case study: 1200 V, 20 A, stable SiC BJTs with high blocking yield. In: Proceeding of 21st International Symposium on Power Semiconductor Devices & IC’s, Orlando, 2009. 339–342

  19. Matochaa K, Stumb Z, Arthurc S, et al. 950 Volt 4H-SiC MOSFETs: DC and transient performance and gate oxide reliability. In: Materials Science Forum, Otsu, 2009. 600–603: 1131–1134

    Article  Google Scholar 

  20. Ryu S H, Krishnaswami S, O’Loughlin M, et al. 10-kV, 123-mΩ·cm2 4H-SiC power DMOSFETs. IEEE Electron Dev Lett, 2004, 25: 556–558

    Article  Google Scholar 

  21. Ryu S H, Agarwal A, Richmond J, et al. Large-area (3.3 mm×3.3 mm) power MOSFETs in 4H-SiC. In: Materials Science Forum, TSUKUBA, 2002. 389–393: 1195–1198

    Article  Google Scholar 

  22. Tan J, Cooper J A, Melloch R. High-voltage accumulation-layer UMOSFET’s in 4H-SiC. IEEE Electron Dev Lett, 1998, 19: 487–489

    Article  Google Scholar 

  23. Zhang J, Zhao J H, Alexandrov P, et al. Demonstration of first 9.2 kV 4H-SiC bipolar junction transistor. Electron Lett, 2004, 40: 1381–1382

    Article  Google Scholar 

  24. Balachandran S, Li C, Losee P A, et al. 6 kV 4H-SiC BJTs with specific on-resistance below the unipolar limit using a selectively grown base contact process. In: Proceeding of 19th International Symposium on Power Semiconductor Devices & IC’s, Jeju, 2007. 293–296

  25. Zhao J H, Tone K, Alexandrov P, et al. 1710-V 2.77-m Omega cm(2) 4H-SiC trenched and implanted vertical junction field-effect transistors. IEEE Electron Dev Lett, 2003, 24: 81–83

    Article  MATH  Google Scholar 

  26. Zhao J H, Alexandrov P, Zhang J, et al. Fabrication and characterization of 11-kV normally off 4H-SiC trenched-andemplanted vertical junction FET. IEEE Electron Dev Lett, 2004, 25: 474–476

    Article  Google Scholar 

  27. Domeij M, Zaring C, Konstantinov A O, et al. 2.2 kV SiC BJTs with low V-CESAT fast switching and short-circuit capability. In: Materials Science Forum, 2010. 645–648: 1033–1036

    Article  Google Scholar 

  28. O’Brien H, Ogunniyi A, Jon Zhang Q, et al. Pulse performance and reliability analysis of a 1.0 cm2 4H-SiC GTO. In: Saddow S E, Sanchez E, Zhao F, eds. Silicon Carbide 2010-Materials, Processing, and Devices, Warrendale, 2010. Mater Res Soc Symp Proc, 2010, 1246: B08–03

  29. Zhang N Q, Moran B, DenBaars S P, et al. Kilovolt AlGaN/GaN HEMTs as switching devices. Phys Stat Sol A, 2001, 188: 213–217

    Article  Google Scholar 

  30. Huili X, Dora Y, Chini A, et al. High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates. IEEE Electron Dev Lett, 2004, 25: 161–163

    Article  Google Scholar 

  31. Uemoto Y, Shibata D, Yanagihara M, et al. 8300 V blocking voltage AlGaN/GaN power HFET with thick poly-AlN passivation. IEDM Tech Dig, 2007, 10–12: 861–864

    Google Scholar 

  32. Yagi S, Shimizu M, Okumura H, et al. High breakdown voltage AlGaN/GaN metal-insulator-semiconductor highelectron-mobility transistor with TiO2/SiN gate insulator. Jpn J Appl Phys, 2007, 46: 2309–2311

    Article  Google Scholar 

  33. Dora Y, Chakraborty A, McCarthy L, et al. High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates. IEEE Electron Device Lett, 2006, 27: 713–715

    Article  Google Scholar 

  34. Tipirneni N, Koudymov A, Adivarahan V, et al. The 1.6-kV AlGaN/GaN HFETs. IEEE Electron Dev Lett, 2006, 27: 716–718

    Article  Google Scholar 

  35. Uemoto Y, Ueda T, Tanaka T, et al. Recent advances of high voltage AlGaN/GaN power HFETs. In: Morkoc H, Litton C W, Chyi J I, eds. Proc SPIE Gallium Nitride mater. devices IV, San Jose, 2009. 7216: 721 606–721 611

  36. Lu B, Piner E L, Palacios T. Schottky-Drain Technology for AlGaN/GaN High-Electron Mobility Transistors. IEEE Electron Dev Lett, 2010, 31: 302–304

    Article  Google Scholar 

  37. Wong K Y, Chen W, Chen K J. Wide bandgap GaN smart power chip technology. In: CS MANTECH Conference, Tampa, 2009

  38. Franke W T, Fuchs F W. Comparison of switching and conducting performance of SiC-JFET and SiC-BJT with a state of the art IGBT. In: 13th European Conference on Power Electronics Power Electronics and Applications, Barcelona, 2009. 1–10

  39. Burger B, Kranzer D. Extreme high efficiency pv-power converters. In: 13th European Conference on Power Electronics Power Electronics and Applications, Barcelona, 2009

  40. Transic. http://www.transic.com

  41. Nawaz M, Zaring C, Onoda S, et al. Radiation hardness assessment of high voltage 4H-SiC BJTs. In: Proceedings of 67th Device Research Conference, University Park, 2009. 279–280

  42. Hallén A, Nawaz M, Zaring C, et al. Low-temperature annealing of radiation-induced degradation in 4H-SiC bipolar junction transistors. IEEE Electron Dev Lett, 2010, 31: 707–709

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Östling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Östling, M. High power devices in wide bandgap semiconductors. Sci. China Inf. Sci. 54, 1087–1093 (2011). https://doi.org/10.1007/s11432-011-4232-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4232-9

Keywords

Navigation