Skip to main content
Log in

Bioinspired superwetting surfaces for fog harvesting fabricated by picosecond laser direct ablation

水雾收集仿生超润湿表面的皮秒激光加工研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Fog harvesting has been considered as a promising method for solving water crisis in underdeveloped regions. To mimic and optimize the alleged natural fog harvesting ability of the stenocara beetle, hybrid superhydrophobic (hydrophobic, superhydrophilic)/hydrophilic patterns are processed on stainless steel via picosecond laser direct writing. Basically, after laser processing, the surfaces of stainless steel change from hydrophilic to superhydrophilic. Then, after chemical and heat treatment, the superhydrophilic surfaces become superhydrophobic with ultra-low adhesion, and superhydrophobic (hydrophobic) with ultra-high adhesion, respectively. This work systematically examines the fog harvesting ability of picosecond laser treated surfaces (LTS), pristine surfaces (PS), laser and chemical treated surfaces (LCTS), laser and heat-treated surfaces (LHTS). Compared with the PS, the as-prepared surfaces enhanced the fog harvesting efficiency by 50%. This work provides a fast and simple method to fog collectors, which offer a great opportunity to develop water harvesters for real world applications.

摘要

雾收集被认为是解决欠发达地区水资源危机的一种有前景的方法。为了模仿和优化stenocara 甲 虫的天然水雾收集能力,通过皮秒激光直写技术在不锈钢上加工超疏水(疏水,超亲水)/亲水混合的图 案。研究发现经过激光加工后,不锈钢的表面会从亲水变为超亲水。经过化学和热处理后,超亲水表 面分别变为具有超低黏附性的超疏水表面和具有超高黏附性的超疏水(疏水)表面。本文系统地研究了 原始表面(PS)、皮秒激光处理表面(LTS)、激光和化学处理表面(LCTS)、激光和热处理表面(LHTS) 的水雾收集能力。发现与PS相比,所制备的表面可将水雾收集效率提高50%。这项工作为雾收集提供 了一种快速而简单的方法,为开发用于现实世界的集水器提供了一个很好的选择。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HOWARD G, BARTRAM J. Domestic water quantity, service level and health [R]. Geneva: World Health Organization, 2003.

    Google Scholar 

  2. JACKSON R B, CARPENTER S R, DAHM C N, et al. Water in a changing world [J]. Ecological Applications, 2001, 11(4): 1027–1045. DOI: https://doi.org/10.1890/1051-0761(2001)011[1027:wiacw]2.0.co;2.

    Article  Google Scholar 

  3. UN-Water global analysis and assessment of sanitation and drinkingwater [R]. Geneva: World Health Organization, 2012.

  4. Progress on household drinking water, sanitation and hygiene 2000–2017: Special focus on inequalitie [R]. Geneva: World Health Organization, 2017.

  5. OVERPECK J T. Climate science: The challenge of hot drought [J]. Nature, 2013, 503(7476): 350–351. DOI: https://doi.org/10.1038/503350a.

    Article  Google Scholar 

  6. YANG Hong, THOMPSON J R, FLOWER R J. Beijing 2022: Olympics will make water scarcity worse [J]. Nature, 2015, 525(7570): 455. DOI: https://doi.org/10.1038/525455e.

    Article  Google Scholar 

  7. MEKONNEN M M, HOEKSTRA A Y. Four billion people facing severe water scarcity [J]. Science Advances, 2016, 2(2): e1500323. DOI: https://doi.org/10.1126/sciadv.1500323.

    Article  Google Scholar 

  8. ZHU Hai, YANG Fu-chao, LI Jing, et al. High-efficiency water collection on biomimetic material with superwettable patterns [J]. Chemical Communications (Cambridge, England), 2016, 52(84): 12415–12417. DOI: https://doi.org/10.1039/c6cc05857d.

    Article  Google Scholar 

  9. SUN Yi-han, GUO Zhi-guang. Recent advances of bioinspired functional materials with specific wettability: From nature and beyond nature [J]. Nanoscale Horizons, 2019, 4(1): 52–76. DOI: https://doi.org/10.1039/c8nh00223a.

    Article  MathSciNet  Google Scholar 

  10. JU Jie, BAI Hao, ZHENG Yong-mei, et al. A multi-structural and multi-functional integrated fog collection system in cactus [J]. Nature Communications, 2012, 3: 1247. DOI: https://doi.org/10.1038/ncomms2253.

    Article  Google Scholar 

  11. ROTH-NEBELSICK A, EBNER M, MIRANDA T, et al. Leaf surface structures enable the endemic Namib desert grass Stipagrostis sabulicola to irrigate itself with fog water [J]. Journal of the Royal Society, Interface, 2012, 9(73): 1965–1974. DOI: https://doi.org/10.1098/rsif.2011.0847.

    Article  Google Scholar 

  12. MORICHI G, GALIXTO L B, ZANELLI A. Novel applications for fog water harvesting [J]. Journal of Geoscience and Environment Protection, 2018, 6: 26–36. DOI: https://doi.org/10.4236/gep.2018.63004.

    Article  Google Scholar 

  13. KIM H, YANG S, RAO S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight [J]. Science, 2017, 356(6336): 430–434. DOI: https://doi.org/10.1126/science.aam8743.

    Article  Google Scholar 

  14. SINGH S C, ELKABBASH M, LI Zi-long, et al. Solar-trackable super-wicking black metal panel for photothermal water sanitation [J]. Nature Sustainability, 2020, 3(11): 938–946. DOI: https://doi.org/10.1038/s41893-020-0566-x.

    Article  Google Scholar 

  15. PARKER A R, LAWRENCE C R. Water capture by a desert beetle [J]. Nature, 2001, 414(6859): 33–34. DOI: https://doi.org/10.1038/35102108.

    Article  Google Scholar 

  16. KIM H, RAO S R, KAPUSTIN E A, et al. Adsorption-based atmospheric water harvesting device for arid climates [J]. Nature Communications, 2018, 9: 1191. DOI: https://doi.org/10.1038/s41467-018-03162-7.

    Article  Google Scholar 

  17. JU Jie, YAO Xi, YANG Shuai, et al. Cactus stem inspired cone-arrayed surfaces for efficient fog collection [J]. Advanced Functional Materials, 2014, 24(44): 6933–6938. DOI: https://doi.org/10.1002/adfm.201402229.

    Article  Google Scholar 

  18. SHI Wei-wei, ANDERSON M J, TULKOFF J B, et al. Fog harvesting with harps [J]. ACS Applied Materials & Interfaces, 2018, 10(14): 11979–11986. DOI: https://doi.org/10.1021/acsami.7b17488.

    Article  Google Scholar 

  19. WU Ting-ni, WU Zhi-peng, HE Yu-chun, et al. Femtosecond laser textured porous nanowire structured glass for enhanced thermal imaging [J]. Chinese Optics Letters, 2022, 20(3): 033801. DOI: https://doi.org/10.3788/col202220.033801.

    Article  Google Scholar 

  20. LEE S H, LEE J H, PARK C W, et al. Continuous fabrication of bio-inspired water collecting surface via roll-type photolithography [J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2014, 1(2): 119–124. DOI: https://doi.org/10.1007/s40684-014-0016-1.

    Article  Google Scholar 

  21. THAKUR N, RANGANATH A S, AGARWAL K, et al. Electrospun bead-on-string hierarchical fibers for fog harvesting application [J]. Macromolecular Materials and Engineering, 2017, 302(7): 1700124. DOI: https://doi.org/10.1002/mame.201700124.

    Article  Google Scholar 

  22. CHEN Hua-wei, ZHANG Peng-fei, ZHANG Li-wen, et al. Continuous directional water transport on the peristome surface of Nepenthes alata [J]. Nature, 2016, 532(7597): 85–89. DOI: https://doi.org/10.1038/nature17189.

    Article  Google Scholar 

  23. LIN Jian-bin, TAN Xian-hua, SHI Tie-lin, et al. Leaf vein-inspired hierarchical wedge-shaped tracks on flexible substrate for enhanced directional water collection [J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44815–44824. DOI: https://doi.org/10.1021/acsami.8b13012.

    Article  Google Scholar 

  24. ZHU Hai, GUO Zhi-guang. Hybrid engineered materials with high water-collecting efficiency inspired by Namib Desert beetles [J]. Chemical Communications (Cambridge, England), 2016, 52(41): 6809–6812. DOI: https://doi.org/10.1039/c6cc01894g.

    Article  Google Scholar 

  25. BAI Hao, WANG Lin, JU Jie, et al. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns [J]. Advanced Materials (Deerfield Beach, Fla), 2014, 26(29): 5025–5030. DOI: https://doi.org/10.1002/adma.201400262.

    Article  Google Scholar 

  26. JIA Xian-shi, CHEN Yong-qian, LIU Lei, et al. Advances in laser drilling of structural ceramics [J]. Nanomaterials (Basel, Switzerland), 2022, 12(2): 230. DOI: https://doi.org/10.3390/nano12020230.

    Article  Google Scholar 

  27. ZHU Zhuo, WU Jun-rui, WU Zhi-peng, et al. Femtosecond laser micro/nano fabrication for bioinspired superhydrophobic or underwater superoleophobic surfaces [J]. Journal of Central South University, 2021, 28(12): 3882–3906. DOI: https://doi.org/10.1007/s11771-021-4886-4.

    Article  Google Scholar 

  28. YIN Kai, WU Jun-rui, DENG Qin-wen, et al. Tailoring micro/nanostructured porous polytetrafluoroethylene surfaces for dual-reversible transition of wettability and transmittance [J]. Chemical Engineering Journal, 2022, 434: 134756. DOI: https://doi.org/10.1016/j.cej.2022.134756.

    Article  Google Scholar 

  29. ZHANG Jing-zhou, ZHANG Yuan-chen, YONG Jia-le, et al. Femtosecond laser direct weaving bioinspired superhydrophobic/hydrophilic micro-pattern for fog harvesting [J]. Optics & Laser Technology, 2022, 146: 107593. DOI: https://doi.org/10.1016/j.optlastec.2021.107593.

    Article  Google Scholar 

  30. YIN Kai, DU Hai-feng, DONG Xin-ran, et al. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection [J]. Nanoscale, 2017, 9(38): 14620–14626. DOI: https://doi.org/10.1039/c7nr05683d.

    Article  Google Scholar 

  31. REN Fei-fei, LI Guo-qiang, ZHANG Zhen, et al. A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection [J]. Journal of Materials Chemistry A, 2017, 5(35): 18403–18408. DOI: https://doi.org/10.1039/c7ta04392a.

    Article  Google Scholar 

  32. KOSTAL E, STROJ S, KASEMANN S, et al. Fabrication of biomimetic fog-collecting superhydrophilic-superhydrophobic surface micropatterns using femtosecond lasers [J]. Langmuir, 2018, 34(9): 2933–2941. DOI: https://doi.org/10.1021/acs.langmuir.7b03699.

    Article  Google Scholar 

  33. CHU Dong-kai, YAO Peng, HUANG Chuan-zhen. Anti-reflection silicon with self-cleaning processed by femtosecond laser [J]. Optics & Laser Technology, 2021, 136: 106790. DOI: https://doi.org/10.1016/j.optlastec.2020.106790.

    Article  Google Scholar 

  34. CHU Dong-kai, SINGH S C, YONG Jia-le, et al. Superamphiphobic surfaces with controllable adhesion fabricated by femtosecond laser Bessel beam on PTFE [J]. Advanced Materials Interfaces, 2019, 6(14): 1900550. DOI: https://doi.org/10.1002/admi.201900550.

    Article  Google Scholar 

  35. YONG Jia-le, YANG Qing, CHEN Feng, et al. Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion [J]. Applied Surface Science, 2014, 288: 579–583. DOI: https://doi.org/10.1016/j.apsusc.2013.10.076.

    Article  Google Scholar 

  36. YONG Jia-le, YANG Qing, HOU Xun, et al. Nature-inspired superwettability achieved by femtosecond lasers [J]. Ultrafast Science, 2022: 1–51. DOI: https://doi.org/10.34133/2022/9895418.

  37. YONG Jia-le, YANG Qing, HUO Jing-lan, et al. Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 µm) for bubble/gas manipulation [J]. International Journal of Extreme Manufacturing, 2022, 4(1): 015002. DOI: https://doi.org/10.1088/2631-7990/ac466f.

    Article  Google Scholar 

Download references

Funding

Project(52075302) supported by the National Natural Science Foundation of China; Project(ZR2021QE247) supported by the Shandong Provincial Natural Science Foundation, China; Projects(ZR2018ZB0521, ZR2018ZA0401) supported by the Major Basic Research of Shandong Provincial Natural Science Foundation, China; Project(Kfkt2020-09) supported by the Open Research Fund of State Key Laboratory of High Performance Complex Manufacturing, Central South University, China; Project(52075302) supported by the Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Shandong University), Ministry of Education, China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-kai Chu  (褚东凯).

Additional information

Contributors

LI Wei-zheng validated the proposed method with practical experiments and wrote the first draft of manuscript. CHU Dong-kai conducted the literature review and wrote the manuscript. QU Shuo-shuo and YIN Kai edited the manuscript. HU Shuang-shuang reviewed and edited the manuscript. YAO Peng reviewed the manuscript.

Conflict of interest

LI Wei-zheng, CHU Dong-kai, QU Shuo-shuo, YIN Kai, HU Shuang-shuang and YAO Peng declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Wz., Chu, Dk., Qu, Ss. et al. Bioinspired superwetting surfaces for fog harvesting fabricated by picosecond laser direct ablation. J. Cent. South Univ. 29, 3368–3375 (2022). https://doi.org/10.1007/s11771-022-5157-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5157-8

Key words

关键词

Navigation