Skip to main content
Log in

The HEPD particle detector of the CSES satellite mission for investigating seismo-associated perturbations of the Van Allen belts

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

CSES (China Seismo-Electromagnetic Satellite) is a mission developed by CNSA (Chinese National Space Administration) and ASI (Italian Space Agency), to investigate the near-Earth electromagnetic, plasma and particle environment, for studying the seismo-associated disturbances in the ionosphere-magnetosphere transition zone. The anthropogenic and electromagnetic noise, as well as the natural non-seismic electromagnetic emissions is mainly due to tropospheric activity. In particular, the mission aims to confirming the existence of possible temporal correlations between the occurrence of earthquakes for medium and strong magnitude and the observation in space of electromagnetic perturbations, plasma variations and precipitation of bursts with high-energy charged particles from the inner Van Allen belt. In this framework, the high energy particle detector (HEPD) of the CSES mission has been developed by the Italian LIMADOU Collaboration. HEPD is an advanced detector based on a tower of scintillators and a silicon tracker that provides good energy and angular resolution and a wide angular acceptance, for electrons of 3–100 MeV, protons of 30–200 MeV and light nuclei up to the oxygen. CSES satellite has been launched on February 2nd, 2018 from the Jiuquan Satellite Launch Center (China).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lay T, Wallace T C. Modern Global Seismology. San Diego: Academic Press, 1995

    Google Scholar 

  2. Mjachkin V I, Brace W F, Sobolev G A, et al. Two models for earthquake forerunners. Pure Appl Geophys, 1975, 113: 169–181

    Article  Google Scholar 

  3. Pulinets S, Boyarchuk K. Ionospheric Precursors of Earthquakes. New York: Springer, 2004

    Google Scholar 

  4. Cicerone R D, Ebel J E, Britton J. A systematic compilation of earthquake precursors. Tectonophysics, 2009, 476: 371–396

    Article  Google Scholar 

  5. Freund F T, Kulahci I G, Cyr G, et al. Air ionization at rock surface and pre-earthquake signals. J Atmos Sol-Terr Phys, 2009, 71: 1824–1834

    Article  Google Scholar 

  6. Freund F T. Toward a unified solid state theory for pre-earthquake signals. Acta Geophys, 2010, 58: 719–766

    Article  Google Scholar 

  7. Hayakawa M. Earthquake Prediction Studies: Seismo Electromagnetics. Tokyo: Terrapub, 2013. 794

    Google Scholar 

  8. Pulinets S A, Ouzounov D P, Karelin A V, et al. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphereatmosphere-ionosphere-magnetosphere system. Geomagn Aeron, 2015, 55: 521–538

    Article  Google Scholar 

  9. Sgrigna V, Buzzi A, Conti L, et al. Seismo-induced effects in the nearearth space: Combined ground and space investigations as a contribution to earthquake prediction. Tectonophysics, 2007, 431: 153–171

    Article  Google Scholar 

  10. De Santis A, De Franceschi G, Spogli L, et al. Geospace perturbations induced by the Earth: The state of the art and future trends. Phys Chem Earth Parts A/B/C, 2015, 85–86: 17–33

    Article  Google Scholar 

  11. Warwick J W, Stoker C, Meyer T R. Radio emission associated with rock fracture—Possible application to the great Chilean earthquake of May 22, 1960. J Geophys Res, 1982, 87: 2851–2859

    Article  Google Scholar 

  12. Davies K, Baker D M. Ionospheric effects observed around the time of the Alaskan Earthquake of March 28, 1964. J Geophys Res, 1965, 70: 2251–2253

    Article  Google Scholar 

  13. Varotsos P, Alexopoulos K, Lazaridou-Varotsou M, et al. Earthquake predictions issued in Greece by seismic electric signals since February 6, 1990. Tectonophysics, 1993, 224: 269–288

    Article  Google Scholar 

  14. Kopytenko Y A, Matiashvili T G, Voronov P M, et al. Detection of ultra-low-frequency emissions connected with the Spitak earthquake and its aftershock activity, based on geomagnetic pulsations data at Dusheti and Vardzia observatories. Phys Earth Planet Inter, 1993, 77: 85–95

    Article  Google Scholar 

  15. Fraser-Smith A C, McGill P R, Helliwell R A, et al. Ultra-low frequency magnetic field measurements in southern California during the Northridge Earthquake of 17 January 1994. Geophys Res Lett, 1994, 21: 2195–2198

    Article  Google Scholar 

  16. Ohta K, Umeda K, Watanabe N, et al. ULF/ELF emissions observed in Japan, possibly associated with the Chi-Chi earthquake in Taiwan. Nat Hazards Earth Syst Sci, 2001, 1: 37–42

    Article  Google Scholar 

  17. Ismaguilov V S, Kopytenko Y A, Hattori K, et al. ULF magnetic emissions connected with under sea bottom earthquakes. Nat Hazards Earth Syst Sci, 2001, 1: 23–31

    Article  Google Scholar 

  18. Oike K, Ogawa T. Electromagnetic radiations from shallow earthquakes observed in the LF range. J Geomagn Geoelec, 1986, 38: 1031–1040

    Article  Google Scholar 

  19. Johnston M J S. Review of electric and magnetic fields accompanying seismic and volcanic activity. Surveys Geophys, 1997, 18: 441–476

    Article  Google Scholar 

  20. Uyeda S, Al-Damegh K S, Dologlou E, et al. Some relationship between VAN seismic electric signals (SES) and earthquake parameters. Tectonophysics, 1999, 304: 41–55

    Article  Google Scholar 

  21. Eftaxias K, Kapiris P, Polygiannakis J, et al. Experience of short term earthquake precursors with VLF-VHF electromagnetic emissions. Nat Hazards Earth Syst Sci, 2003, 3: 217–228

    Article  Google Scholar 

  22. Park S K, Johnston M J S, Madden T R, et al. Electromagnetic precursors to earthquakes in the Ulf band: A review of observations and mechanisms. Rev Geophys, 1993, 31: 117–132

    Article  Google Scholar 

  23. Merzer M, Klemperer S L. Modeling low-frequency magnetic-field precursors to the Loma Prieta Earthquake with a precursory increase in fault-zone conductivity. Pure Appl Geophys, 1997, 150: 217–248

    Article  Google Scholar 

  24. Molchanov O A, Hayakawa M. On the generation mechanism of ULF seismogenic electromagnetic emissions. Phys Earth Planet Inter, 1998, 105: 201–210

    Article  Google Scholar 

  25. Surkov V. ULF electromagnetic perturbations resulting from the fracture and dilatancy in the earthquake preparation zone. In: Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. Tokyo: Terrapub, 1999. 371–382

    Google Scholar 

  26. Hayakawa M, Kopytenko Y, Smirnova N, et al. Monitoring ULF magnetic disturbances, and schemes for recognizing earthquake precursors. Phys Chem Earth Part A-Solid Earth Geodesy, 2000, 25: 263–269

    Article  Google Scholar 

  27. Dobrovolsky I P, Zubkov S I, Miachkin V I. Estimation of the size of earthquake preparation zones. Pure Appl Geophys, 1979, 117: 1025–1044

    Article  Google Scholar 

  28. Dobrovolsky I P, Gershenzon N I, Gokhberg M B. Theory of electrokinetic effects occurring at the final stage in the preparation of a tectonic earthquake. Phys Earth Planet Inter, 1989, 57: 144–156

    Article  Google Scholar 

  29. Gokhberg M B, Morgounov V A, Aronov E L. On the high frequency electromagnetic radiation during seismic activity. Dokladi Acad Sci USSR, 1979, 248: 1077–1081

    Google Scholar 

  30. Larkina V I, Migulin V V, Molchanov O A, et al. Some statistical results on very low frequency radiowave emissions in the upper ionosphere over earthquake zones. Phys Earth Planet Inter, 1989, 57: 100–109

    Article  Google Scholar 

  31. Parrot M, Mogilevsky M M. VLF emissions associated with earthquakes and observed in the ionosphere and the magnetosphere. Phys Earth Planet Inter, 1989, 57: 86–99

    Article  Google Scholar 

  32. Bilichenko S V, Iljin F S, Kim E F, et al. ULF response of the ionosphere for earthquake preparation processes. Dokl Acad Nauk USSR, 1990, 311: 1077–1080

    Google Scholar 

  33. Serebryakova O N, Bilichenko S V, Chmyrev V M, et al. Electromagnetic ELF radiation from earthquake regions as observed by lowaltitude satellites. Geophys Res Lett, 1992, 19: 91–94

    Article  Google Scholar 

  34. Parrot M, Achache J, Berthelier J J, et al. High-frequency seismoelectromagnetic effects. Phys Earth Planet Inter, 1993, 77: 65–83

    Article  Google Scholar 

  35. Zlotnicki J, Li F, Parrot M. Signals recorded by DEMETER satellite over active volcanoes during the period 2004 August-2007 December. Geophys J Int, 2010, 183: 1332–1347

    Article  Google Scholar 

  36. Zlotnicki J, Li F, Parrot M. Ionospheric disturbances recorded by DEMETER Satellite over active volcanoes: From August 2004 to December 2010. Int J Geophys, 2013, 2013: 1–17

    Article  Google Scholar 

  37. Ouzounov D, Freund F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv Space Res, 2004, 33: 268–273

    Article  Google Scholar 

  38. Ouzounov D, Liu D, Chunli K, et al. Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics, 2007, 431: 211–220

    Article  Google Scholar 

  39. Tramutoli V, Cuomo V, Filizzola C, et al. Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (Izmit) earthquake, August 17, 1999. Remote Sens Environ, 2005, 96: 409–426

    Article  Google Scholar 

  40. Galper A M, Dmitrenko V V, Nikitina N V, et al. Interrelation of fluxes of high energy charged particles in radiation belt with seismicity of Earth. Cosmic Res, 1989, 27: 789–792

    Google Scholar 

  41. Chmyrev V M, Isaev N V, Serebryakova O N, et al. Small-scale plasma inhomogeneities and correlated ELF emissions in the ionosphere over an earthquake region. J Atmos Sol-Terr Phys, 1997, 59: 967–974

    Article  Google Scholar 

  42. Rodger C J, Dowden R L, Thomson N R. Observations of electromagnetic activity associated with earthquakes by low altitude satellites. In: Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. Tokyo: Terrapub, 1999, 697–710

    Google Scholar 

  43. Yan R, Parrot M, Pinc¸on J L. Statistical study on variations of the ionospheric ion density observed by DEMETER and related to seismic activities. J Geophys Res Space Phys, 2017, 122: 12421–12429

    Article  Google Scholar 

  44. Lee C C, Liu J Y, Pan C J, et al. The heights of sporadic-E layer si multaneously observed by the VHF radar and ionosondes in Chung-Li. Geophys Res Lett, 2000, 27: 641–644

    Article  Google Scholar 

  45. Parrot M, Berthelier J J, Lebreton J P, et al. Examples of unusual iono-spheric observations made by the DEMETER satellite over seismic re-gions. Phys Chem Earth Parts A/B/C, 2006, 31: 486–495

    Article  Google Scholar 

  46. Bortnik J, Bleier T E, Dunson C, et al. Estimating the seismotelluric current required for observable electromagnetic ground signals. Ann Geophys, 2010, 28: 1615–1624

    Article  Google Scholar 

  47. Pulinets S, Ouzounov D. Lithosphere-Atmosphere-Ionosphere Cou-pling (LAIC) model: An unified concept for earthquake precursors val-idation. J Asian Earth Sci, 2011, 41: 371–382

    Article  Google Scholar 

  48. Sgrigna V. Program for scientific missions dedicated to Earth sciences. ESPERIA Phase A Report. Rome: Italian Space Agency (ASI), 2001. 1–194

    Google Scholar 

  49. Sgrigna V, Console R, Conti L, et al. The ESPERIA project: A mis-sion to investigate the near-Earth space. In: Earth Observation with CHAMP. Berlin-Heidelberg: Springer, 2005. 407–412

    Chapter  Google Scholar 

  50. Parrot M. The micro-satellite DEMETER. J GeoDyn, 2002, 33: 535–541

    Article  Google Scholar 

  51. Bencardino R, Altaura F, Bidoli V, et al. Response of the LAZIO-SiRad detector to low energy electrons. In: Proceedings of the 29th Interna-tional Cosmic Ray Conference. Mumbai: Tata Institute of Fundamental Research, 2005. 449–452

    Google Scholar 

  52. Sgrigna V, Altamura F, Ascani S, et al. First data from the EGLE ex-periment onboard the ISS. Microgravity Sci Tec, 2007, 19: 70–74

    Article  Google Scholar 

  53. Bakaldin A V, Batishchev A G, Voronov S A, et al. Satellite experiment ARINA for studying seismic effects in the high-energy particle fluxes in the Earth’s magnetosphere. Cosmic Res, 2007, 45: 445–448

    Article  Google Scholar 

  54. Lefeuvre F, Blanc E, Pincc¸on J L, et al. TARANIS-a satellite project dedicated to the physics of TLEs and TGFs. In: Planetary Atmospheric Electricity. New York: Springer, 2008, 301–315

    Google Scholar 

  55. Shen X H, Zhang X M, Wang L W, et al. The earthquake re-lated disturbances in ionosphere and project of the first China seismo-electromagnetic satellite. Earthq Sci, 2011, 24: 639–650

    Article  Google Scholar 

  56. Walt M. Introduction to Geomagnetically Trapped Radiation. Cam-bridge: Cambridge University Press, 1994

    Book  Google Scholar 

  57. Lanzerotti L J. Space weather and natural hazards. Space Weather, 2012, 10: S05008

    Article  Google Scholar 

  58. Shprits Y Y, Subbotin D, Drozdov A, et al. Unusual stable trapping of the ultrarelativistic electrons in the Van Allen radiation belts. Nat Phys, 2013, 9: 699–703

    Article  Google Scholar 

  59. Parrot M, Zaslavski Y. Physical mechanisms of man-made influences on the magnetosphere. Surv Geophys, 1996, 17: 67–100

    Article  Google Scholar 

  60. Voronov S A, Galper A M, Koldashov S V, et al. Registration of spo-radic increase of high energy particle flux near brazilian anomaly re-gion. In: Proceedings of the 20th International Cosmic Ray Conference Moscow, Volume 4. 1987. 451–452

    Google Scholar 

  61. Voronov S A, Galper A M, Koldashov S V, et al. Increase of high-energy charged particle fluxes in SAA region and the Earth’s seismic activity. Cosmic Res, 1990, 28: 789–791

    Google Scholar 

  62. Voronov S A, Galper A M, Koldashov S V, et al. Observation of high-energy charged particle flux increases in SAA region in 10 September 1985. Cosmic Res, 1989, 27: 629–631

    Google Scholar 

  63. Aleshina ME, Galper A M, Koldashov S V, et al. Interrelation between locations of charged particle precipitation regions and earthquake epi-centres. Cosmic Res, 1992, 30: 79–81

    Google Scholar 

  64. Galper A M, Koldashov S V, Voronov S A. High energy particle flux variations as earthquake predictors. Adv Space Res, 1995, 15: 131–134

    Article  Google Scholar 

  65. Galperin Yu I, Gladyshev V A, Jordjio N V, et al. Precipitation of high-energy captured particles in the magnetosphere above epicenter of an incipient earthquake. Cosmic Res, 1992, 30: 89–106

    Google Scholar 

  66. Pustovetov V P, Malyshev A V. Spatial-temporal correlation of the earthquakes and variations of high-energy particle flux in the inner ra-diation belt. Cosmic Res, 1993, 31: 84–87

    Google Scholar 

  67. Aleksandrin S Yu, Galper A M, Grishantzeva L A, et al. High-energy charged particle bursts in the near-Earth space as earthquake precur-sors. Ann Geophys, 2003, 21: 597–602

    Article  Google Scholar 

  68. Sgrigna V, Carota L, Conti L, et al. Correlations between earthquakes and anomalous particle bursts from SAMPEX/PET satellite observa-tions. J Atmos Sol-Terr Phys, 2005, 67: 1448–1462

    Article  Google Scholar 

  69. Fidani C, Battiston R, Burger W J, et al. A study of NOAA particle flux sensitivity to solar activity and strategies to search for correlations among satellite data and earthquake phenomena. Int J Remote Sens, 2012, 33: 4796–4814

    Article  Google Scholar 

  70. Battiston R, Vitale V. First evidence for correlations between electron fluxes measured by NOAA-POES satellites and large seismic events. Nucl Phys B-Proc Sup, 2013, 243–244: 249–257

    Article  Google Scholar 

  71. Nĕmec F, Santolík O, Parrot M, et al. Spacecraft observations of elec-tromagnetic perturbations connected with seismic activity. Geophys Res Lett, 2008, 35: L05109

    Google Scholar 

  72. Krechetov V V. Cerenkov radiation of protons in the magnetosphere as a source of VLF waves preceding an earthquake. Geomagn Aeron (Engl Transl), 1996, 35: 688–691

    Google Scholar 

  73. McIlwain C E. Coordinates for mapping the distribution of magneti-cally trapped particles. J Geophys Res, 1961, 66: 3681–3691

    Article  Google Scholar 

  74. Swift DW. Mechanisms for auroral precipitation—A review. Rev Geo-phys, 1981, 19: 185–211

    Article  Google Scholar 

  75. Walt M, Voss H D, Pickett J. Electron precipitation coincident with ELF/VLF wave bursts. J Geophys Res, 2002, 107: SMP 28–1–SMP 28–6

  76. Millan R M, Thorne R M. Review of radiation belt relativistic electron losses. J Atmos Sol-Terr Phys, 2007, 69: 362–377

    Article  Google Scholar 

  77. Rodger C J, Clilverd M A, McCormick R J. Significance of lightning generated whistlers to inner radiation belt electron lifetimes. J Geophys Res, 2003, 108: 1462

    Article  Google Scholar 

  78. Inan U S, Piddyachiy D, Peter W B, et al. DEMETER satellite obser-vations of lightning-induced electron precipitation. Geophys Res Lett, 2007, 34: L07103

    Article  Google Scholar 

  79. Gemelos E S, Inan U S, Walt M, et al. Seasonal dependence of en-ergetic electron precipitation: Evidence for a global role of lightning. Geophys Res Lett, 2009, 36: L21107

    Article  Google Scholar 

  80. Sauvaud J A, Maggiolo R, Jacquey C, et al. Radiation belt electron precipitation due to VLF transmitters: Satellite observations. Geophys Res Lett, 2008, 35: L09101

    Article  Google Scholar 

  81. Graf K L, Inan U S, Piddyachiy D, et al. DEMETER observations of transmitter-induced precipitation of inner radiation belt electrons. J Geophys Res, 2009, 114: A07205

    Article  Google Scholar 

  82. Sauvaud J A, Parrot M, Slominska E. Comment on “Comparative study on earthquake and ground based transmitter induced radiation belt elec-tron precipitation at middle latitude”, by Sideropoulos et al. (2011). Nat Hazards Earth Syst Sci, 2014, 14: 1–9

    Article  Google Scholar 

  83. Shih J H. Matteo Ricci—Italian Jesuit missionary. In: Encyclope-dia Britannica. Https://www.britannica.com/biography/Matteo-Ricci, 2017

    Google Scholar 

  84. Picozza P, Galper A M, Castellini G, et al. PAMELA A payload for antimatter matter exploration and light-nuclei astrophysics. Astropart Phys, 2007, 27: 296–315

    Article  Google Scholar 

  85. Aguilar M, Alberti G, Alpat B, et al. First result from the alpha mag-netic spectrometer on the international space station: Precision mea-surement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys Rev Lett, 2013, 110: 141102

    Article  Google Scholar 

  86. Xuhui S. The experimental satellite on electromagnetism monitoring. Chin J Space Sci, 2014, 34: 558–562

    Google Scholar 

  87. Alfonsi L, Ambroglini F, Ambrosi G, et al. The HEPD particle detector and the EFD electric field detector for the CSES satellite. Radiat Phys Chem, 2017, 137: 187–192

    Article  Google Scholar 

  88. Badoni D, Ammendola R, Bertello I, et al. A high-performance electric field detector for space missions. Planet Space Sci, 2018, 153: 107–119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livio Conti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosi, G., Bartocci, S., Basara, L. et al. The HEPD particle detector of the CSES satellite mission for investigating seismo-associated perturbations of the Van Allen belts. Sci. China Technol. Sci. 61, 643–652 (2018). https://doi.org/10.1007/s11431-018-9234-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9234-9

Keywords

Navigation