Skip to main content
Log in

Study on periodic orbits around the dipole segment model for dumbbell-shaped asteroids

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Equilibrium points and periodic orbits in irregular gravitational fields are significant for an understanding of dynamical behaviors around asteroids as well as deep space exploring missions. The dipole segment is a good alternative model to study qualitative dynamical properties near dumbbell-shaped asteroids. In this paper, the dipole segment model and its equilibrium points are simply introduced. The stability of the two triangular equilibrium points of the system is numerically examined. Next, periodic orbits are presented around the dipole segment model in two different cases, in which triangular equilibria are linearly stable and unstable, respectively. New types of periodic orbits are illustrated in detail, including their orbital shapes, periods and the Jacobi integral. The orbital stability, topological classification and bifurcations of these orbits are also analyzed with numerical continuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Werner R A. The gravitational potential of a homogeneous polyhedron or don’t cut corners. Celestial Mech Dyn Astr, 1994, 59: 253–278

    Article  MATH  Google Scholar 

  2. Werner R A, Scheeres D J. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest Mech Dyn Astron, 1997, 65: 313–344

    Article  MATH  Google Scholar 

  3. Lan L, Yang M, Baoyin H, et al. The periodic dynamics of the irregular heterogeneous celestial bodies. Astrophys Space Sci, 2017, 362: 38

    Article  MathSciNet  Google Scholar 

  4. Kaula W M. Theory of Satellite Geodesy: Application of Satellite to Geodesy. Mineola: Dover Publications, 2000

    MATH  Google Scholar 

  5. Geissler P, Petit J M, Durda D D, et al. Erosion and ejecta reaccretion on 243 Ida and its moon. Icarus, 1996, 120: 140–157

    Article  Google Scholar 

  6. Bartczak P, Breiter S, Jusiel P. Ellipsoids, material points and material segments. Celestial Mech Dyn Astr, 2006, 96: 31–48

    Article  MathSciNet  MATH  Google Scholar 

  7. Broucke R A, Elipe A. The dynamics of orbits in a potential field of a solid circular ring. Regul Chaotic Dyn, 2005, 10: 129–143

    Article  MathSciNet  MATH  Google Scholar 

  8. Azevêdo C, Ontaneda P, Cabral H E. On the fixed homogeneous circle problem. Adv NOnlinear Stud, 2007, 7: 47–75

    Article  MathSciNet  MATH  Google Scholar 

  9. Azevêdo C, Ontaneda P. On the existence of periodic orbits for the fixed homogeneous circle problem. J Differ Equ, 2007, 235: 341–365

    Article  MathSciNet  MATH  Google Scholar 

  10. Alberti A, Vidal C. Dynamics of a particle in a gravitational field of a homogeneous annulus disk. Celestial Mech Dyn Astr, 2007, 98: 75–93

    Article  MathSciNet  MATH  Google Scholar 

  11. Fukushima T. Precise computation of acceleration due to uniform ring or disk. Celest Mech Dyn Astr, 2010, 108: 339–356

    Article  MathSciNet  MATH  Google Scholar 

  12. Blesa F. Periodic orbits around simple shaped bodies. Monografías del Seminario Matemático García de Galdeano, 2006, 33: 67–74

    MathSciNet  MATH  Google Scholar 

  13. Guibout V, Scheeres D J. Stability of surface motion on a rotating ellipsoid. Celest Mech Dyn Astron, 2003, 87: 263–290

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu X, Baoyin H, Ma X. Periodic orbits in the gravity field of a fixed homogeneous cube. Astrophys Space Sci, 2011, 334: 357–364

    Article  MATH  Google Scholar 

  15. Riaguas A, Elipe A, Lara M. Periodic orbits around a massive straight segment. Celest Mech Dyn Astron, 1999, 73: 169–178

    Article  MathSciNet  MATH  Google Scholar 

  16. Arribas M, Elipe A. Non-integrability of the motion of a particle around a massive straight segment. Phys Lett A, 2001, 281: 142–148

    Article  MathSciNet  MATH  Google Scholar 

  17. Riaguas A, Elipe A, López-Moratalla T. Non-linear stability of the equilibria in the gravity field of a finite straight segment. Celest Mech Dyn Astron, 2001, 81: 235–248

    Article  MathSciNet  MATH  Google Scholar 

  18. Elipe A, Riaguas A. Nonlinear stability under a logarithmic gravity field. Int Math J, 2003, 3: 435–453

    MathSciNet  MATH  Google Scholar 

  19. Gutiérrez-Romero S, Palacián J F, Yanguas P. The invariant manifolds of a finite straight segment. Monografías de la Real Academia de Ciencias de Zaragoza, 2004, 25: 137–148

    MathSciNet  Google Scholar 

  20. Palacián J F, Yanguas P, Gutiérrez-Romero S. Approximating the invariant sets of a finite straight segment near its collinear equilibria. SIAM J Appl Dyn Syst, 2006, 5: 12–29

    Article  MathSciNet  MATH  Google Scholar 

  21. Romanov V A, Doedel E J. Periodic orbits associated with the libration points of the massive rotating straight segment. Int J Bifurcat Chaos, 2014, 24: 1430012

    Article  MathSciNet  MATH  Google Scholar 

  22. Bartczak P. Double material segment as the model of irregular bodies. Celest Mech Dyn Astron, 2003, 86: 131–141

    Article  MathSciNet  MATH  Google Scholar 

  23. Najid N E, Haj Elourabi E, Zegoumou M. Potential generated by a massive inhomogeneous straight segment. Res Astron Astrophys, 2011, 11: 345–352

    Article  Google Scholar 

  24. Chermnykh S V. On the stability of libration points in a certain gravitational field. Vestn Leningr Univ, 1987, 2: 73–77

    MATH  Google Scholar 

  25. Gozdziewski K. Nonlinear stability of the lagrangian libration points in the chermnykh problem. Celest Mech Dyn Astron, 1998, 70: 41–58

    Article  MathSciNet  MATH  Google Scholar 

  26. Li X, Qiao D, Cui P. The equilibria and periodic orbits around a dumbbell-shaped body. Astrophys Space Sci, 2013, 348: 417–426

    Article  Google Scholar 

  27. Zeng X, Jiang F, Li J, et al. Study on the connection between the rotating mass dipole and natural elongated bodies. Astrophys Space Sci, 2015, 356: 29–42

    Article  Google Scholar 

  28. Zeng X Y, Liu X D, Li J F. Extension of the rotating dipole model with oblateness of both primaries. Res Astron Astrophys, 2017, 17: 11–20

    Article  Google Scholar 

  29. Shang H, Wu X, Cui P. Periodic orbits in the doubly synchronous binary asteroid systems and their applications in space missions. Astrophys Space Sci, 2015, 355: 69–87

    Article  Google Scholar 

  30. Yu Y, Richardson D C, Michel P. Structural analysis of rubble-pile asteroids applied to collisional evolution. Astrodynamics, 2017, 1: 57–69

    Article  Google Scholar 

  31. Yang HW, Zeng XY, et al. Feasible region and stability analysis for hovering around elongated asteroids with low thrust. Res Astron Astrophys, 2015, 15: 1571–1586

    Article  Google Scholar 

  32. Feng F, Tang L N, Xu J F, et al. A review of the end-effector of large space manipulator with capabilities of misalignment tolerance and soft capture. Sci China Tech Sci, 2016, 59: 1621–1638

    Article  Google Scholar 

  33. Yu Y, Baoyin H. Orbital dynamics in the vicinity of asteroid 216 Kleopatra. Astron J, 2012, 143: 62–70

    Article  Google Scholar 

  34. Jiang Y, Baoyin H. Periodic orbit families in the gravitational field of irregular-shaped bodies. Astron J, 2016, 152: 137

    Article  Google Scholar 

  35. Zeng X, Liu X. Searching for time optimal periodic orbits near irregularly shaped asteroids by using an indirect method. IEEE Trans Aerosp Electron Syst, 2017, 53: 1221–1229

    Article  Google Scholar 

  36. Shang H, Wu X, Ren Y, et al. An efficient algorithm for global periodic orbits generation near irregular-shaped asteroids. Commun NOnlinear Sci Numer Simul, 2017, 48: 550–568

    Article  MathSciNet  Google Scholar 

  37. Zeng X Y, Alfriend K T. Periodic orbits in the Chermnykh problem. Astrodynamics, 2017, 1: 41–55

    Article  Google Scholar 

  38. Yu Y, Baoyin H. Generating families of 3D periodic orbits about asteroids. Mon Not R Astron Soc, 2012, 427: 872–881

    Article  Google Scholar 

  39. Zeng X Y, Fang, B D. Li J F, et al. Generalized flyby trajectories around elongated minor celestial bodies as a rotating mass dipole. Acta Mechanica Sinica, 2016, 32: 535–545

    Google Scholar 

  40. Jiang F, Baoyin H, Li J. Practical techniques for low-thrust trajectory optimization with homotopic approach. J Guidance Control Dyn, 2012, 35: 245–258

    Article  Google Scholar 

  41. Jiang Y, Yu Y, Baoyin H. Topological classifications and bifurcations of periodic orbits in the potential field of highly irregular-shaped celestial bodies. NOnlinear Dyn, 2015, 81: 119–140

    Article  MathSciNet  MATH  Google Scholar 

  42. Ni Y S, Jiang Y, Baoyin H X. Multiple bifurcations in the periodic orbit around Eros. Astrophys Space Sci, 2016, 361: 1–15

    Article  MathSciNet  Google Scholar 

  43. Jiang Y, Baoyin H, Li H. Periodic motion near the surface of asteroids. Astrophys Space Sci, 2015, 360: 63

    Article  Google Scholar 

  44. Yu Y, Baoyin H, Jiang Y. Constructing the natural families of periodic orbits near irregular bodies. Mon Not R Astron Soc, 2015, 453: 3270–3278

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiangYuan Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zeng, X. & Liu, X. Study on periodic orbits around the dipole segment model for dumbbell-shaped asteroids. Sci. China Technol. Sci. 61, 819–829 (2018). https://doi.org/10.1007/s11431-017-9099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9099-y

Keywords

Navigation