Skip to main content
Log in

Topological classifications and bifurcations of periodic orbits in the potential field of highly irregular-shaped celestial bodies

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the distribution of characteristic multipliers, the structure of submanifolds, the phase diagram, bifurcations, and chaotic motions in the potential field of rotating highly irregular-shaped celestial bodies (hereafter called irregular bodies). The topological structure of the submanifolds for the orbits in the potential field of an irregular body is shown to be classified into 34 different cases, including six ordinary cases, three collisional cases, three degenerate real saddle cases, seven periodic cases, seven period-doubling cases, one periodic and collisional case, one periodic and degenerate real saddle case, one period-doubling and collisional case, one period-doubling and degenerate real saddle case, and four periodic and period-doubling cases. The different distribution of the characteristic multipliers has been shown to fix the structure of the submanifolds, the type of orbits, the dynamical behaviour and the phase diagram of the motion. Classifications and properties for each case are presented. Moreover, tangent bifurcations, period-doubling bifurcations, Neimark–Sacker bifurcations, and the real saddle bifurcations of periodic orbits in the potential field of an irregular body are discovered. Submanifolds appear to be Mobius strips and Klein bottles when the period-doubling bifurcation occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lazzaro, D., Ferraz-Mello, S., Fernández, J.A.: Solar system binaries. Proc. IAU Symp. 229, 301–318 (2006)

    Google Scholar 

  2. Taylor, P.A., Margot, J.L.: Binary asteroid systems: tidal end states and estimates of material properties. Icarus 212(2), 661–676 (2011)

    Article  Google Scholar 

  3. Marchis, F., Descamps, P., Hestroffer, D., et al.: Discovery of the triple asteroidal system 87 Sylvia. Nature 436(7052), 822–824 (2005)

    Article  Google Scholar 

  4. Ostro, S.J., Hudson, R.S., Nolan, M.C., et al.: Radar observations of asteroid 216 Kleopatra. Science 288(5467), 836–839 (2000)

    Article  Google Scholar 

  5. Descamps, P., Marchis, F., Berthier, J.: Triplicity and physical characteristics of asteroid (216) Kleopatra. Icarus 211(2), 1022–1033 (2011)

    Article  Google Scholar 

  6. Barucci, M.A., Fulchignoni, M., Fornasier, S., et al.: Asteroid target selection for the new Rosetta mission baseline 21 Lutetia and 2867 Steins. Astron. Astrophys. 430, 313–317 (2005)

    Article  Google Scholar 

  7. Barucci, M.A., Cheng, A.F., Michel, P., et al.: MarcoPolo-R near earth asteroid sample return mission. Exp. Astron. 33(2–3), 645–684 (2012)

    Article  Google Scholar 

  8. Scheeres, D.J.: Orbital mechanics about asteroids and comets. J. Guid. Control Dyn. 35(3), 987–997 (2012)

    Article  MathSciNet  Google Scholar 

  9. Scheeres, D.J.: Orbital mechanics about small bodies. Acta Astronaut. 7, 14–21 (2012)

    Google Scholar 

  10. Takahashi, Y., Scheeres, D.J., Werner, R.A.: Surface gravity fields for asteroids and comets. J. Guid. Control Dyn. 36(2), 362–374 (2013)

    Article  Google Scholar 

  11. Kaasalainen, M., Ďurech, J., Warner, B.D., et al.: Acceleration of the rotation of asteroid 1862 Apollo by radiation torques. Nature 446(7134), 420–422 (2007)

    Article  Google Scholar 

  12. Bennera, L.A.M., Ostroa, S.J., Magrib, C., et al.: Near-earth asteroid surface roughness depends on compositional class. Icarus 198(2), 294–304 (2008)

    Article  Google Scholar 

  13. Kaasalainen, M., Torppa, J., Piironen, J.: Binary structures among large asteroids. Astron. Astrophys. 383, 19–22 (2002)

  14. Hartmann, W.K.: The shape of Kleopatra. Science 288(5467), 820–821 (2000)

    Article  Google Scholar 

  15. Scheeres, D.J., Ostro, S.J., Hudson, R.S., et al.: Orbits close to asteroid 4769 Castalia. Icarus 121, 67–87 (1996)

    Article  Google Scholar 

  16. Scheeres, D.J., Ostro, S.J., Hudson, R.S., et al.: Dynamics of orbits close to asteroid 4179 Toutatis. Icarus 132(1), 53–79 (1998)

    Article  Google Scholar 

  17. Scheeres, D.J., Williams, B.G., Miller, J.K.: Evaluation of the dynamic environment of an asteroid: applications to 433 Eros. J. Guid. Control Dyn. 23(3), 466–475 (2000)

    Article  Google Scholar 

  18. Jiang, Y., Baoyin, H., Li, J., et al.: Orbits and manifolds near the equilibrium points around a rotating asteroid. Astrophys. Space Sci. 349, 83–106 (2014)

    Article  Google Scholar 

  19. Yu, Y., Baoyin, H.: Generating families of 3D periodic orbits about asteroids. Mon. Not. R. Astron. Soc. 427(1), 872–881 (2012)

    Article  Google Scholar 

  20. Yu, Y., Baoyin, H.: Orbital dynamics in the vicinity of asteroid 216 Kleopatra. Astron. J. 143(3), 62–70 (2012)

    Article  Google Scholar 

  21. Elipe, A., Lara, M.: A simple model for the chaotic motion around (433) Eros. J. Astron. Sci. 51(4), 391–404 (2003)

    MathSciNet  Google Scholar 

  22. Mondelo, J.M., Broschart, S.B., Villac, B.F.: Dynamical analysis of 1:1 resonances near asteroids: application to Vesta. In: Proceedings of the 2010 AIAA/AAS Astrodynamics Specialists Conference, August 2–5, Toronto, ON, Canada (2010)

  23. Riaguas, A., Elipe, A., Lara, M.: Periodic orbits around a massive straight segment. Celest. Mech. Dyn. Astron. 73(1/4), 169–178 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Werner, R.A.: The gravitational potential of a homogeneous polyhedron or don’t cut corners. Celest. Mech. Dyn. Astron. 59(3), 253–278 (1994)

    Article  MATH  Google Scholar 

  25. Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest. Mech. Dyn. Astron. 65(3), 313–344 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Stooke, P.: Small Body Shape Models. EAR-A-5-DDR-STOOKE-SHAPE-MODELS-V1.0. NASA Planetary Data System (2002)

  27. Neese, C. (ed): Small body radar shape models V2.0. EAR-A-5-DDR-RADARSHAPE-MODELS-V2.0. NASA Planetary Data System (2004)

  28. Scheeres, D.J.: The dynamical evolution of uniformly rotating asteroids subject to YORP. Icarus 188, 430–450 (2007)

    Article  Google Scholar 

  29. Taylor, P.A., Margot, J.L., Vokrouhlický, D., et al.: Spin rate of asteroid (54509) 2000 PH5 increasing due to the YORP effect. Science 316(5822), 274–277 (2007)

    Article  Google Scholar 

  30. Bellerose, J., Girard, A., Scheeres, D.J.: Dynamics and control of surface exploration robots on asteroids. Optim. Coop. Control Strateg. 381, 135–150 (2009)

    Google Scholar 

  31. Tardivel, S., Scheeres, D.J.: Contact motion on surface of asteroid. J. Spacecr. Rocket. 51(6), 1857–1871 (2014)

    Article  Google Scholar 

  32. Oberc, P.: Electrostatic and rotational ejection of dust particles from a disintegrating cometary aggregate. Planet. Space Sci. 45(2), 221–228 (1997)

    Article  Google Scholar 

  33. Jewitt, D., Agarwal, J., Li, J., et al.: Disintegrating asteroid P/2013 R3. Astrophys. J. Lett. 784(1), L8 (2014)

    Article  Google Scholar 

  34. Asphaug, S.J., Ostro, R.S., Hudson, D.J.: Disruption of kilometer-sized asteroids by energetic collisions. Nature 393, 437–440 (1998)

    Article  Google Scholar 

  35. Mottola, S., Erikson, A., Harris, A.W., et al.: Physical model of near-earth asteroid 6489 Golevka (1991 JX) from optical and infrared observations. Astron. J. 114(3), 1234–1245 (1997)

  36. Sagdeev, R.Z., Szabó, F., Avanesov, G.A., et al.: Television observations of comet Halley from Vega spacecraft. Nature 321, 262–266 (1986)

    Article  Google Scholar 

  37. Sagdeev, R.Z., Elyasberg, P.E., Moroz, V.I.: Is the nucleus of comet Halley a low density body? Nature 331, 240–242 (1988)

    Article  Google Scholar 

  38. Peale, S.J., Lissauer, J.J.: Rotation of Halley’s comet. Icarus 79(2), 396–430 (1989)

    Article  Google Scholar 

  39. Michel, P., Benz, W., Tanga, P., et al.: Collisions and gravitational reaccumulation: forming asteroid families and satellites. Science 294(5547), 1696–1700 (2001)

    Article  Google Scholar 

  40. Scheeres, D.J., Fahnestock, E.G., Ostro, S.J., et al.: Dynamical configuration of binary near-earth asteroid (66391) 1999 KW4. Science 314(5803), 1280–1283 (2006)

    Article  Google Scholar 

  41. La Spina, A., Paolicchi, P., Kryszczyńska, A., et al.: Retrograde spins of near-earth asteroids from the Yarkovsky effect. Nature 428(6981), 400–401 (2004)

    Article  Google Scholar 

  42. Jewitt, D., Weaver, H., Agarwal, J., et al.: A recent disruption of the main-belt asteroid P/2010 A2. Nature 467(7317), 817–819 (2010)

    Article  Google Scholar 

  43. Walsh, K.J., Richardson, D.C., Michel, P.: Rotational breakup as the origin of small binary asteroids. Nature 454(7201), 188–191 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Basic Research Program of China (973 Program, 2012CB720000), the State Key Laboratory Foundation of Astronautic Dynamics (No. 2014ADL0202), and the National Natural Science Foundation of China (No. 11372150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Jiang.

Appendix

Appendix

See Table 1.

Table 1 Classifications and properties for the (a) ordinary cases, (b) periodic cases, (c) period-doubling cases, (d) collisional cases, (e) degenerate real saddle cases, (f) mixed cases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Yu, Y. & Baoyin, H. Topological classifications and bifurcations of periodic orbits in the potential field of highly irregular-shaped celestial bodies. Nonlinear Dyn 81, 119–140 (2015). https://doi.org/10.1007/s11071-015-1977-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1977-5

Keywords

Navigation