Skip to main content
Log in

Inhibitory-autapse-enhanced signal transmission in neural networks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The multi-frequency hybrid signal is an important stimulus from the external environment on the neuronal networks for detection. The mechanism of the detection may be understood by the vibrational resonance, in which the moderate intensity of high-frequency force can amplify the response of neuronal systems to the low-frequency signal. In this paper, the effects of electrical and chemical autapses on signal transmission are investigated in scale-free and small-world neuronal networks, where an external two-frequency signal is introduced only to one neuron as a pacemaker. We observed that the inhibitory autapse can significantly enhance the signal propagation by the vibrational resonance, while the electrical and excitatory autapses typically weaken the signal transmission, indicating that the inhibitory autapse is more beneficial to transmit the rhythm of the pacemaker to the whole networks. These findings contribute to our understanding of signal detection and information processing in the autapic neuronal system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 (1995)

    Article  Google Scholar 

  2. Gammaitoni, L., Hanggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223 (1998)

    Article  Google Scholar 

  3. Leonard, D.S., Reichl, L.E.: Stochastic resonance in a chemical reaction. Phys. Rev. E 49, 1734 (1994)

    Article  Google Scholar 

  4. Bezrukov, S.M., Voydanoy, I.: Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature 378, 362–364 (1995)

    Article  Google Scholar 

  5. Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: Stochastic resonance in climatic change. Tellus 34, 10–16 (1982)

    Article  MATH  Google Scholar 

  6. Stacey, W.C., Durand, D.M.: Stochastic resonance improves signal detection in hippocampal CA1 neurons. J. Neurophysiol. 83, 1394–1402 (2000)

    Article  Google Scholar 

  7. Kaplan, D.T., Clay, J.R., Manning, T., Glass, L., Guevara, M.R., Shrier, A.: Subthreshold dynamics in periodically stimulated squid giant axons. Phys. Rev. Lett. 76, 4074 (1996)

    Article  Google Scholar 

  8. Ozer, M.: Frequency-dependent information coding in neurons with stochastic ion channels for subthreshold periodic forcing. Phys. Lett. A 354, 258–263 (2006)

    Article  Google Scholar 

  9. Ozer, M., Uzuntarla, M., Kayikcioglu, T., Graham, L.J.: Stochastic resonance on Newman-Watts networks of Hodgki-Huxley neurons with local periodic driving. Phys. Lett. A 373, 964–968 (2008)

    Article  Google Scholar 

  10. Yu, Y., Wang, W., Wang, J.F., Liu, F.: Resonance-enhanced signal detection and transduction in the Hodgkin-Huxley neuronal systems. Phys. Rev. E 63, 021907 (2001)

    Article  Google Scholar 

  11. Kawaguchi, M., Mino, H., Durand, D.M.: Stochastic resonance can enhance information transmission in neural networks. IEEE Trans. Biomed. Eng. 58, 1950–1958 (2011)

    Article  Google Scholar 

  12. Ozera, M., Perc, M., Uzuntarla, M., Koklukayab, E.: Weak signal propagation through noisy feedforward neuronal networks. NeuroReport 21, 338–343 (2010)

    Article  Google Scholar 

  13. Bolhasani, E., Azizi, Y., Valizadeh, A.: Direct connection sassist neurons to detect correlation in small amplitude noises. Front. Comput. Neurosci. 7, 108 (2013)

    Article  Google Scholar 

  14. Yao, C.G., Ma, J., Zhiwei He, Z.W., Qian, Y., Liu, L.P.: Transmission and detection of biharmonic envelope signal in a feed-forward multilayer neural network. Physica A 523, 797–806 (2019)

    Article  MathSciNet  Google Scholar 

  15. Esfahani, Z.G., Gollo, L.L., Alireza Valizadeh, A.: Stimulus-dependent synchronization in delayed-coupled neuronal networks. Sci. Rep. 6, 23471 (2016)

    Article  Google Scholar 

  16. Perc, M., Gosak, M.: Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillators. New J Phys. 10, 053008 (2008)

    Article  Google Scholar 

  17. Perc, M.: Stochastic resonance on excitable small-world networks via a pacemaker. Phys. Rev. E 76, 066203 (2007)

    Article  Google Scholar 

  18. Winfree, A.T.: The Geometry of Biological Time. Springer, New York (1980)

    Book  MATH  Google Scholar 

  19. Blasius, B., Huppert, A., Stone, L.: Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399, 354–359 (1999)

    Article  Google Scholar 

  20. Landa, P.S., McClintock, P.V.E.: Vibrational resonance. J. Phys. A: Math. Gen. 33, L433–L438 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Baltanás, J.P., López, L., Blechman, I.I., Landa, P.S., Zaikin, A., Kurths, J., Sanjuán, M.A.F.: Experimental evidence, numerics, and theory of vibrational resonance in bistable systems. Phys. Rev. E 67, 066119 (2003)

    Article  Google Scholar 

  22. Blekhman, I.I., Landa, P.S.: Conjugate resonances and bifurcations in nonlinear systems under biharmonical excitation. Int. J Non-Linear Mech. 39(3), 421–426 (2004)

    Article  MATH  Google Scholar 

  23. Ullner, E., Zaikin, A., Garcia-Ojalvo, J., Bascones, R., Kurths, J.: Vibrational resonance and vibrational propagation in excitable systems. Phys. Lett. A 312, 348–354 (2003)

    Article  MathSciNet  Google Scholar 

  24. Yao, C.G., Zhan, M.: Signal transmission by vibrational resonance in one-way coupled bistable systems. Phys. Rev. E 81, 061129 (2010)

    Article  Google Scholar 

  25. Casado-Pascual, J., Baltanás, J.P.: Effects of additive noise on vibrational resonance in a bistable system. Phys. Rev. E 69, 046108 (2004)

    Article  Google Scholar 

  26. Yao, C.G., Liu, Y., Zhan, M.: Frequency-resonance-enhanced vibrational resonance in bistable systems. Phys. Rev. E 83, 061122 (2011)

    Article  Google Scholar 

  27. Chizhevsky, V.N., Smeu, E., Giacomelli, G.: Experimental evidence of “Vibrational Resonance” in an optical system. Phys. Rev. Lett. 91, 220602 (2003)

    Article  Google Scholar 

  28. Yang, L., Liu, W., Yi, M., Wang, C., Zhu, Q., Zhan, X., Jia, Y.: Vibrational resonance induced by transition of phase-locking modes in excitable systems. Phys. Rev. E 86, 016209 (2012)

    Article  Google Scholar 

  29. Wu, X.X., Yao, C.G., Shuai, J.W.: Enhanced multiple vibrational resonances by \(Na^+\) and \(K^+\) dynamics in a neuron model. Sci. Rep. 5, 7684 (2015)

    Article  Google Scholar 

  30. Yao, C.G., He, Z.W., Nakano, T., Shuai, J.W.: Spiking patterns of a neuron model to stimulus: Rich dynamics and oxygen’ s role. Chaos 28, 083112 (2018)

    Article  MathSciNet  Google Scholar 

  31. Maksimov, A.: On the subharmonic emission of gas bubbles under two-frequency excitation. Ultrasonics 35(1), 79–86 (1997)

    Article  Google Scholar 

  32. Victor, J.D., Conte, M.M.: Two-frequency analysis of interactions elicited by Vernier stimuli. Vis. Neurosci. 17(6), 959–973 (2000)

    Article  Google Scholar 

  33. Gherm, V., Zernov, N., Lundborg, B., Vastberg, A.: The two-frequency coherence function for the fluctuating ionosphere: narrowband pulse propagation. J. Atmos. Sol.-Terr. Phys. 59(4), 1831–1841 (1997)

    Article  Google Scholar 

  34. Pariz, A., Esfahani, Z.G., Parsi, S.S., Valizadeh, A., Canals, S., Mirasso, C.R.: High frequency neurons determine effective connectivity in neuronal networks. NeuroImage 166, 349–359 (2018)

    Article  Google Scholar 

  35. Gerhardt, H.C.: Significance of two frequency bands in long distance vocal communication in the green treefrog. Nature 261, 692–694 (1976)

    Article  Google Scholar 

  36. Heiligenberg, W.: Neural Nets in Electric Fish. MIT Press, Cambridge (1991)

    Google Scholar 

  37. Middleton, J., Longtin, A.J.B., Maler, L.: The cellular basis for parallel neural transmission of a high-frequency stimulus and its low-frequency envelope. Proc. Natl. Acad. Sci. USA 103(39), 14596–14601 (2006)

    Article  Google Scholar 

  38. Van, H., Der, L., Glaser, E.M.: Autapses in neocortex cerebri: synapses between a pyramidal cell’ s axon and its own dendrites. Brain Res. 48, 355–360 (1972)

    Article  Google Scholar 

  39. Bekkers, J.M.: Neurophysiology: are autapses prodigal synapses? Curr. Biol. 8, R52–R55 (1998)

    Article  Google Scholar 

  40. Flight, M.H.: Axon degeneration: committing to a break up. Nat. Rev. Neurosci. 10, 316–317 (2009)

    Google Scholar 

  41. Bekkers, J.M., Stevens, C.F.: Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc. Natl. Acad. Sci. USA 88, 7834–7838 (1991)

    Article  Google Scholar 

  42. Bekkers, J.M.: Synaptic transmission: functional autapses in the cortex. Curr. Biol. 13, R433–R435 (2003)

    Article  Google Scholar 

  43. Bacci, A., Huguenard, J.R.: Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneuronsoriginal research. Neuron 49, 119–130 (2006)

    Article  Google Scholar 

  44. Bacci, A., Huguenard, J.R., Prince, D.A.: Functional autaptic neurotransmission in fast-spiking interneurons: a novel form of feedback inhibition in the neocortex. J. Neurosci. 23, 859–866 (2003)

    Article  Google Scholar 

  45. Qin, H., Ma, J., Wang, C., Wu, Y.: Autapse-induced spiral wave in network of neurons under noise. PLoS ONE 9, e100849 (2014)

    Article  Google Scholar 

  46. Qian, Y., Liu, F., Yang, K., Zhang, G., Yao, C.G., Ma, J.: Spatiotemporal dynamics in excitable homogeneous random networks composed of periodically self-sustained oscillation. Sci. Rep. 7, 11885 (2017)

    Article  Google Scholar 

  47. Wu, Y., Gong, Y., Wang, Q.: Autaptic activity-induced synchronization transitions in Newman–Watts network of Hodgkin–Huxley neurons. Chaos 2, 043113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, H., Wang, L., Chen, Y., Chen, Y.: Effect of autaptic activity on the response of a Hodgkin–Huxley neuron. Chaos 24, 033122 (2014)

    Article  MathSciNet  Google Scholar 

  49. Chen, J.X., Xiao, J., Li Qiao, L.Y., Xu, J.R.: Dynamics of scroll waves with time-delay propagation in excitable media. Commun. Nonlinear Sci. Numer. Simul. 59, 331–337 (2018)

    Article  MathSciNet  Google Scholar 

  50. Li, Y., Schmid, G., Haggi, P., Schimansky-Geier, L.: Spontaneous spiking in an autaptic Hodgkin–Huxley setup. Phys. Rev. E 82, 061907 (2010)

    Article  MathSciNet  Google Scholar 

  51. Hashemi, M., Valizadeh, A., Azizi, Y.: Effect of duration of synaptic activity on spike rate of a Hodgkin–Huxley neuron with delayed feedback. Phys. Rev. E 85, 021917 (2012)

    Article  Google Scholar 

  52. Song, X., Wang, H.T., Chen, Y.: Autapse-induced firing patterns transitions in the Morris–Lecar neuron model. Nonlinear Dyn. 96, 2341–2350 (2019)

    Article  Google Scholar 

  53. Sun, X.J., Li, G.F.: Synchronization transitions induced by partial time delay in a excitatory-inhibitory coupled neuronal network. Nonlinear Dyn. 96, 2509–2522 (2017)

    Article  MathSciNet  Google Scholar 

  54. Zhao, Y.T., Wei, Y.H., Shuai, J.M., Wang, Y.: Fitting of the initialization function of fractional order systems. Nonlinear Dyn. 93, 1599–1618 (2018)

    Article  Google Scholar 

  55. Zhang, X.H., Liu, S.Q.: Nonlinear delayed feedback control of synchronization in an excitatory-inhibitory coupled neuronal network. Nonlinear Dyn. 96, 2509–2522 (2019)

    Article  Google Scholar 

  56. Qian, N., Sejnowski, T.J.: When is an inhibitory synapse effective? Proc. Natl. Acad. Sci. USA 87, 8145–8149 (1990)

    Article  Google Scholar 

  57. Eccles, J.C.: The synapse: from electrical to chemical transmission. Annu. Rev. Neurosci. 5, 325–339 (1982)

    Article  Google Scholar 

  58. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  59. Connelly, W.M., Lees, G.: Modulation and function of the autaptic connections of layer V fast spiking interneurons in the rat neocortex. J. Physiol. 588, 2047–2063 (2010)

    Article  Google Scholar 

  60. Swadlow, H.A.: Physiological properties of individual cerebral axons studied in vivo for as long as one year. J. Neurophysiol. 54, 1346–1362 (1985)

    Article  Google Scholar 

  61. Wang, S., Wang, W., Liu, F.: Propagation of firing rate in a feed-forward neuronal network. Phys. Rev. Lett. 96, 018103 (2006)

    Article  Google Scholar 

  62. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992)

    Article  Google Scholar 

  63. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  64. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  65. Lübke, J., Markram, H., Frotscher, M., Sakmann, B.: Frequency and dendritic distribution of autapses established by layer 5 pyramidal neurons in the developing rat neocortex: comparison with synaptic innervation of adjacent neurons of the same class. J. Neurosci. 16, 3209 (1996)

    Article  Google Scholar 

  66. Wang, C., Guo, S., Xu, Y., Ma, J., Tang, J., Alzahrani, F., Hobiny, A.: Formation of autapse connected to neuron and its biological function. Complexity 2017, 5436737 (2017)

    MathSciNet  MATH  Google Scholar 

  67. Xu, Y., Ying, H., Jia, Y., Ma, J., Hayat, T.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported partially by the National Natural Science Foundation of China under Grant Nos. 11675112, 11675134 and 11874310; and the 111 Project under Grant No. B16029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Shuai.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, C., He, Z., Nakano, T. et al. Inhibitory-autapse-enhanced signal transmission in neural networks. Nonlinear Dyn 97, 1425–1437 (2019). https://doi.org/10.1007/s11071-019-05060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05060-z

Keywords

Navigation