Skip to main content
Log in

Operation methods of resistive random access memory

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, different electrical measurement and operation methods of resistive random access memory (RRAM) have been summarized, including voltage sweeping mode (VSM), current sweeping mode (CSM), constant current stress (CCS), constant voltage stress (CVS), rectangular pulse mode (RPM), and triangle pulse mode (TPM). Meanwhile, the effects of these measurement methods on the forming, set, reset and read operation as well as endurance performance have been compared. Finally, their respective controllability of various resistive switching parameters have been summarized and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waser R, Dittmann R, Staikov G, et al. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv Mater, 2009, 21: 2632–2663

    Article  Google Scholar 

  2. Waser R, Aono M. Nanoionics-based resistive switching memories. Nat Mater, 2007, 6: 833–840

    Article  Google Scholar 

  3. Sawa A. Resistive switching in transition metal oxides. Mater Today, 2008, 11: 28–36

    Article  Google Scholar 

  4. Yang J J, Strukov D B, Stewart D R, et al. Memristive devices for computing. Nat Nanotechnol, 2013, 8: 13–24

    Article  Google Scholar 

  5. Lin W P, Liu S J, Gong T, et al. Polymer-based resistive memory materials and devices. Adv Mater, 2014, 26: 570–606

    Article  Google Scholar 

  6. Pan F, Gao S, Chen C, et al. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater Sci Eng R, 2014, 83: 1–59

    Article  Google Scholar 

  7. Zhu X J, Shang J, Li R W. Resistive switching effects in oxide sandwiched structures. Front Mater Sci, 2012, 6: 1–24

    Article  Google Scholar 

  8. Guo C Y, Liu W J, Zhao C Y. Research on the control method for voltage-current source hybrid-HVDC system. Sci China Tech Sci, 2013, 56: 2771–2777

    Article  Google Scholar 

  9. Shang Y F, Ye X Y, Feng J Y. Theoretical analysis and simulation of thermoelastic deformation of bimorph microbeams. Sci China Tech Sci, 2013, 56: 1715–1722

    Article  Google Scholar 

  10. Tu Y P, Zheng Z H, Li X. AC ageing characteristics of Co-doped ZnO varistors. Sci China Tech Sci, 2013, 56: 1354–1360

    Article  Google Scholar 

  11. Wong H S P, Lee H Y, Yu S, et al. Metal-oxide RRAM. PIEEE, 2012, 100: 1951–1970

    Google Scholar 

  12. Pan F, Chen C, Wang Z, et al. Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Prog Nat Sci-Mater, 2010, 20: 1–15

    Article  Google Scholar 

  13. Wang Y, Liu Q, Lv H B, et al. Improving the electrical performance of resistive switching memory using doping technology. Chin Sci Bull, 2012, 57: 1235–1240

    Article  Google Scholar 

  14. Chen Z L, Hao L Z, Zhang B Q. A model for nanosecond pulsed dielectric barrier discharge (NSDBD) actuator and its investigation on the mechanisms of separation control over an airfoil. Sci China Tech Sci, 2013, 56: 1055–1065

    Article  Google Scholar 

  15. Hu L, Wang H P, Li L H, et al. Geometric optimization of electrostatic fields for stable levitation of metallic materials. Sci China Tech Sci, 2013, 56: 53–59

    Article  Google Scholar 

  16. Guan X, Yu S, Wong H S P. On the switching parameter variation of metal-oxide RRAM-part I: Physical modeling and simulation methodology. IEEE Trans Electron Devices, 2012, 59: 1172–1182

    Article  Google Scholar 

  17. Yin M, Zhou P, Lv H B, et al. Improvement of resistive switching in CuxO using new RESET mode. IEEE Electron Device Lett, 2008, 29: 681–683

    Article  Google Scholar 

  18. Bao D. Tansition metal oxide thin films for nonvolatile resistive random access memory applications. J Ceram Soc Jpn, 2009, 117: 929–934

    Article  Google Scholar 

  19. Lanza M. A review on resistive switching in high-k dielectrics: A nanoscale point of view using conductive atomic force microscope. Materials, 2014, 7: 2155–2182

    Article  Google Scholar 

  20. Li Y, Long S, Liu Q, et al. An overview of resistive random access memory devices. Chin Sci Bull, 2011, 56: 3072–3078

    Article  Google Scholar 

  21. Yang L, Kuegeler C, Szot K, et al. The influence of copper top electrodes on the resistive switching effect in TiO2 thin films studied by conductive atomic force microscopy. Appl Phys Lett, 2009, 95: 013109

    Article  Google Scholar 

  22. Long S, Cagli C, Ielmini D, et al. Reset statistics of NiO-based resistive switching memories. IEEE Electron Device Lett, 2011, 32: 1750–1752

    Google Scholar 

  23. Long S, Lian X, Cagli C, et al. A model for the set statistics of RRAM inspired in the percolation model of oxide breakdown. IEEE Electron Device Lett, 2013, 34: 999–1001

    Article  Google Scholar 

  24. Long S, Lian X, Ye T, et al. Cycle-to-cycle intrinsic RESET statistics in HfO2-based unipolar RRAM devices. IEEE Electron Device Lett, 2013, 34: 623–625

    Article  Google Scholar 

  25. Yang X, Long S, Zhang K, et al. Investigation on the RESET switching mechanism of bipolar Cu/HfO2/Pt RRAM devices with a statistical methodology. J Phys D: Appl Phys, 2013, 46: 245107

    Article  Google Scholar 

  26. Luo W C, Lin K L, Huang J J, et al. Rapid prediction of RRAM RESET-state disturb by ramped voltage stress. IEEE Electron Device Lett, 2012, 33: 597–599

    Article  Google Scholar 

  27. Long S, Perniola L, Cagli C, et al. Voltage and power-controlled regimes in the progressive unipolar RESET transition of HfO2-based RRAM. Sci Rep, 2013, 3: 2929

    Google Scholar 

  28. Tang D, Li Y, Zhang G, et al. Single event upset sensitivity of 45 nm FDSOI and SOI FinFET SRAM. Sci China Tech Sci, 2013, 56: 780–785

    Article  Google Scholar 

  29. Lee H Y, Chen P S, Wu T Y, et al. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM. IEEE Int Electron Devices Meet Tech Dig, 2008, 1–4

    Google Scholar 

  30. Cao X, Li X M, Gao X D, et al. Effects of the compliance current on the resistive switching behavior of TiO2 thin films. Appl Phys A, 2009, 97: 883–887

    Article  Google Scholar 

  31. Nardi F, Larentis S, Balatti S, et al. Resistive switching by voltage-driven ion migration in bipolar RRAM—Part I: Experimental study. IEEE Trans Electron Devices, 2012, 59: 2461–2467

    Article  Google Scholar 

  32. Rohde C, Choi B J, D S Jeong, et al. Identification of a determining parameter for resistive switching of TiO2 thin films. Appl Phys Lett, 2005, 86: 262907

    Article  Google Scholar 

  33. Russo U, Ielmini D, Cagli C, et al. Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM. IEEE Int Electron Devices Meet Tech Dig, 2007, 775-778

  34. Xie H, Liu Q, Li Y, et al. Effect of low constant current stress treatment on the performance of the Cu/ZrO2/Pt resistive switching device. Semicond Sci Technol, 2012, 27: 105007

    Article  Google Scholar 

  35. Wan H J, Zhou P, Ye L, et al. In situ observation of compliance-current overshoot and its effect on resistive switching. IEEE Electron Device Lett, 2010,31: 246–248

    Article  Google Scholar 

  36. Kinoshita K, Tsunoda K, Sato Y, et al. Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance. Appl Phys Lett, 2008, 93: 033506

    Article  Google Scholar 

  37. Gu P Y, Chen Y S, Lee H Y, et al. Scalability with silicon nitride encapsulation layer for Ti/HfOx pillar RRAM. Symp VLSI Technol, 2010, 146-147

  38. Liu Q, Guan W, Long S, et al. Resistive switching memory effect of ZrO2 films with Zr+ implanted. Appl Phys Lett, 2008, 92: 012117

    Article  Google Scholar 

  39. Shang D S, Sun J R, Shen B G, et al. Resistance switching in oxides with inhomogeneous conductivity. Chin Phys B, 2013, 22: 067202

    Article  Google Scholar 

  40. Shibuya B K, Dittmann R, Mi S, et al. Impact of defect distribution on resistive switching characteristics of Sr2TiO4 thin films. Adv Mater, 2009, 21: 1–4

    Article  Google Scholar 

  41. Jin L, Zhang M, Huo Z, et al. Effect of high temperature annealing on the performance of MANOS charge trapping memory. Sci China Tech Sci, 2012, 55: 888–893

    Article  Google Scholar 

  42. Menke T, Dittmann R, Meuffels P, et al. Impact of the electroforming process on the device stability of epitaxial Fe-doped SrTiO3 resistive switching cells. J Appl Phys, 2009, 106: 114507

    Article  Google Scholar 

  43. Shang D S, Wang Q, Chen L D, et al. Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag/La0.7Ca0.3Mn0.3/Pt heterostructures. Phys Rev B, 2006, 73: 245–427

    Article  Google Scholar 

  44. Russo U, Cagli C, Spiga S, et al. Impact of electrode materials on resistive-switching memory programming. IEEE Electron Device Lett, 2009, 30: 817–819

    Article  Google Scholar 

  45. Gao B, Chang W Y, Sun B, et al. Identification and application of current compliance failure phenomenon in RRAM device. Symp VLSI Technol, 2010, 144–145

    Google Scholar 

  46. Chen B, Gao B, Sheng S W, et al. A novel operation scheme for oxide-based resistive-switching memory devices to achieve controlled switching behaviors. IEEE Electron Device Lett, 2011, 32: 282–284

    Article  Google Scholar 

  47. Lombardo S, Stathis J H, Linder B P, et al. Dielectric breakdown mechanisms in gate oxides. J Appl Phys, 2005, 98: 121–301

    Article  Google Scholar 

  48. Russo U, Ielmini D, Cagli C, et al. Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) Devices. IEEE Trans Electron Devices, 2009, 56: 186–192

    Article  Google Scholar 

  49. Long S, Cagli C, Ielmini D, et al. Analysis and modeling of resistive switching statistics. J Appl Phys, 2013, 11: 074508

    Google Scholar 

  50. Paskaleva A, Atanassova E, Novkovski N. Constant current stress of Ti-doped Ta2O5 on nitrided Si. J Phys D: Appl Phys, 2009, 42: 025105

    Article  Google Scholar 

  51. Lian W T, Lv H B, Liu Q, et al. Improved resistive switching uniformity in Cu/HfO2/Pt devices by using current sweeping mode. IEEE Electron Device Lett, 2011, 32: 1053–1055

    Article  Google Scholar 

  52. Chen Y S, Lee H Y, Chen P S, et al. Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity. IEEE Int Electron Devices Meet Tech Dig, 2009, 1–4

    Google Scholar 

  53. Luo W C, Liu J C, Feng H T, et al. RRAM set speed-disturb dilemma and rapid statistical prediction methodology. IEEE Int Electron Devices Meet Tech Dig, 2012, 9.5.1–9.5.4

    Google Scholar 

  54. Koveshnikov S, Matthews K, Min K, et al. Real-time study of switching kinetics in integrated 1T/HfOx 1R RRAM: Intrinsic tunability of set/reset voltage and trade-off with switching time. IEEE Int Electron Devices Meet Tech Dig, 2012, 20.4.1–20.4.3

    Google Scholar 

  55. Schindler C, Staikov G, Waser R, et al. Electrode kinetics of Cu-SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories. Appl Phys Lett, 2009, 94: 072109

    Article  Google Scholar 

  56. Jeong D S, Schroeder H, Breuer U, et al. Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere. J Appl Phys, 2008, 104: 123716

    Article  Google Scholar 

  57. Yang X, Zhang M, Wang Y, et al. Analyzing trap generation in silicon-nanocrystal memory devices using capacitance and current measurement. Sci China Tech Sci, 2012, 55: 588–593

    Article  Google Scholar 

  58. Han J, Zhang X, Pei W, et al. A compact neural recording interface based on silicon microelectrode. Sci China Tech Sci, 2013, 56: 2808–2813

    Article  Google Scholar 

  59. Shrestha P, Nminibapie D, Campbell J P, et al. Accurate RRAM transient currents during forming. Symp VLSI Technol, 2014, 1-2

  60. Noh J, Minseok J, Kang C Y, et al. Development of a semiempirical compact model for DC/AC cell operation of HfOx-based ReRAMs. IEEE Electron Device Lett, 2013, 34: 1133–1135

    Article  Google Scholar 

  61. Cao M G, Chen Y S, Sun J R, et al. Nonlinear dependence of set time on pulse voltage caused by thermal accelerated breakdown in the Ti/HfO2/Pt resistive switching devices. Appl Phys Lett, 2012, 101: 203502

    Article  Google Scholar 

  62. Chu T J, Chang T C, Tsai T M, et al. Charge quantity influence on resistance switching characteristic during forming process. IEEE Electron Device Lett, 2013, 34: 502–504

    Article  Google Scholar 

  63. Lee S, Lee D, Woo J, et al. Selector-less ReRAM with an excellent non-linearity and reliability by the band-gap engineered multi-layer titanium oxide and triangular shaped AC pulse. IEEE Int Electron Devices Meet Tech Dig, 2013, 10.6.1–10.6.4

    Google Scholar 

  64. Lu Y, Chen B, Gao B, et al. Improvement of endurance degradation for oxide based resistive switching memory devices correlated with oxygen vacancy accumulation effect. Proc Int Reliab Phys Symp, 2012, MY.4.1–MY.4.4

    Google Scholar 

  65. Cagli C, Nardi F, and Ielmini D. Modeling of set/reset operations in NiO-based resistive-switching memory devices. IEEE Trans Electron Devices, 2009, 56: 1712–1720

    Article  Google Scholar 

  66. Chen B, Lu Y, Gao B, et al. Physical mechanisms of endurance degradation in TMO-RRAM. IEEE Int Electron Devices Meet Tech Dig, 2011, 12.3.1–12.3.4

    Google Scholar 

  67. Larentis S, Cagli C, Nardi F, et al. Filament diffusion model for simulating reset and retention processes in RRAM. Microelectron Eng, 2011, 88: 1119–1123

    Article  Google Scholar 

  68. Song J, Lee D, Woo J, et al. Effects of reset current overshoot and resistance state on reliability of RRAM. IEEE Electron Device Lett, 2014, 35: 636–638

    Article  Google Scholar 

  69. Liu R, Chen H Y, Li H, et al. Impact of pulse rise time on programming of cross-point RRAM arrays. Symp VLSI Technol, 2014, 1–2

    Google Scholar 

  70. Ambrogio S, Balatti S, Choi S, et al. Impact of the mechanical stress on switching characteristics of electrochemical resistive memory. Adv Mater, 2014, 26: 3885–3892

    Article  Google Scholar 

  71. Bocquet M, Deleruyelle D, Aziza H, et al. Robust compact model for bipolar oxide-based resistive switching memories. IEEE Trans Electron Devices, 2014, 61: 674–681

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ShiBing Long or BaoHe Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Long, S., Zhang, M. et al. Operation methods of resistive random access memory. Sci. China Technol. Sci. 57, 2295–2304 (2014). https://doi.org/10.1007/s11431-014-5718-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5718-7

Keywords

Navigation