Skip to main content
Log in

The impact of solvent and modifier on ZnO thin-film transistors fabricated by sol-gel process

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Techniques for fabricating solution-processed zinc oxide (ZnO)-based thin-film transistors (TFTs) are feasible with solution using various routes. Here, ZnO TFTs were fabricated via sol-gel method using zinc acetate as the starting reagent with different modifiers and solvents. The ZnO thin-film semiconductors with well-controlled, preferential crystal orientation and densely packed ZnO crystals can be prepared with the optimized fabrication conditions, exhibiting excellent field-effect far exceeding those of hydrogenated amorphous silicon (a-Si:H). However, the field-effect characteristics of ZnO TFTs were different for different precursor systems which were constituted by zinc acetate, modifiers and solvents. The co-modification of acetoin and monoethanolamine for the precursor system exhibited higher extent of crystal orientation and field-effect. The maximum mobility of 7.65 cm2V−1s−1 and current on-to-off ratio of ∼105–106 have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schroder D K. Semiconductor Material and Device Characterization. New York: Wiley, 1998

    Google Scholar 

  2. Yang A L, Yang Y, Zhang Z Z, et al. Photoluminescence and defect evolution of nano-ZnO thin films at low temperature annealing. Sci China Tech Sci, 2013, 56: 25–31

    Article  Google Scholar 

  3. Li X, Jiang Y D, Tai H L, et al. The fabrication and optimization of OTFT formaldehyde sensors based on Poly(3-hexythiophene)/ZnO composite films. Sci China Tech Sci, 2013, 56: 1877–1882

    Article  Google Scholar 

  4. Howard W E. Thin Film Transistors. New York: Dekker, 2003

    Google Scholar 

  5. Cui J B, Soo Y C, Kandel H, et al. Investigations of ZnO thin films deposited by a reactive pulsed laser ablation. Sci China Ser E-Tech Sci, 2009, 52: 99–103

    Article  Google Scholar 

  6. Zhao L, Xu C S, Liu Y X, et al. Effects of temperature and pressure on the structural and optical properties of ZnO films grown by pulsed laser deposition. Sci China Tech Sci, 2010, 53: 317–321

    Article  Google Scholar 

  7. Su G, Song M Q, Sun W Z, et al. Electrodeposition in organic system and properties of NiO electrochromic films. Sci China Tech Sci, 2012, 55: 1545–1550

    Article  Google Scholar 

  8. Chen Y Y, Chen S G, Chen Y, et al. Surface analysis and electrochemical behaviour of the self-assembled polydopamine/dodecanethiol complex films in protecting 304 stainless steel. Sci China Tech Sci, 2012, 55: 1527–1534

    Article  Google Scholar 

  9. Wang L H, Shu Y H, Fan J. Effect of humidity on microstructure and properties of YBCO films prepared by Electron Beam Coevaporation. Sci China Tech Sci, 2012, 55: 2291–2294

    Article  Google Scholar 

  10. Lei J X, Ma F Z, Shi Y, et al. Synthesis of polycrystalline gamma-AlON powders by novel wet chemical processing. Sci China Tech Sci, 2012, 55: 3405–3410

    Article  Google Scholar 

  11. Bu X B, Wang L B, Li H S, et al. Preparation of composite adsorbent of sawdust and CaCl2 by carbonization method for creating pore. Sci China Tech Sci, 2012, 55: 2404–2408

    Article  Google Scholar 

  12. Frenzel H, Lajn A, Wenckstern H V, et al. Recent progress on ZnO-based metal-semiconductor field-effect transistors and their application in transparent integrated circuits. Adv Mater, 2010, 22: 5332–5349

    Article  Google Scholar 

  13. Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater, 2012, 24: 2945–2986

    Article  Google Scholar 

  14. Obrien P, Saeed T, Knowlcs J. Speciation and the nature of ZnO thin films from chemical bath deposition. J Mater Chem, 1996, 6: 1135–1139

    Article  Google Scholar 

  15. Ohyama M, Kozuka H, Yoko T. Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution. Thin Solid Films, 1997, 306: 78–85

    Article  Google Scholar 

  16. Yamabi S, Imai H. Growth conditions for wurtzite zinc oxide films in aqueous solutions. J Mater Chem, 2002, 12: 3773–3778

    Article  Google Scholar 

  17. Sirringhaus H. Device physics of solution-processed organic fieldeffect transistors. Adv Mater, 2005, 17: 2411–2425

    Article  Google Scholar 

  18. Klauk H. Organic Electronics: Materials, Manufacturing, and Applications. Weinheim: Wiley-VCH, 2006

    Book  Google Scholar 

  19. Subramanian V, Bakhishev T, Redinger D. Solution-processed zinc oxide transistors for low-cost electronics applications. J Display Technol, 2009, 5: 525–530

    Article  Google Scholar 

  20. Han S Y, Lee D H, Herman G S, et al. Inkjet-printed high mobility transparent-oxide semiconductors. J Display Technol, 2009, 5: 520–524

    Article  Google Scholar 

  21. Wang H, Ji Z Y, Liu M, et al. Advances in organic field-effect transistors and integrated circuits. Sci China Ser E-Tech Sci, 2009, 52: 3105–3116

    Article  Google Scholar 

  22. Ryu M K, Park K B, Seon J B, et al. Solution-processed oxide semiconductors for low-cost and high-performance thin-film transistors and fabrication of organic light-emitting-diode displays. J Soc Inf Disp, 2010, 18: 734–744

    Article  Google Scholar 

  23. Jeong S, Moon J. Low-temperature, solution-processed metal oxide thin film transistors. J Mater Chem, 2012, 22: 1243–1250

    Article  Google Scholar 

  24. Li Y, Liu Q, Wang X Z, et al. Pentacene thin film transistor with low threshold voltage and high mobility by inserting a thin metal phthalocyanines interlayer. Sci China Tech Sci, 2012, 55: 417–420

    Article  Google Scholar 

  25. Park J S, Maeng W-J, Kim H-S, et al. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films, 2012, 520: 1679–1693

    Article  Google Scholar 

  26. Shimoda T, Matsuki Y, Furusawa M, et al. Solution-processed silicon films and transistors. Nature, 2006, 440: 783–786

    Article  Google Scholar 

  27. Ridley B A, Nivi B, Jacobson J M. All-inorganic field effect transistors fabricated by printing. Science, 1999, 286: 746–749

    Article  Google Scholar 

  28. Byrne P D, Facchetti A, Marks T J. High-performance thin-film transistors from solution-processed cadmium selenide and a self-assembled multilayer gate dielectric. Adv Mater, 2008, 20: 2319–2324

    Article  Google Scholar 

  29. Mitzi D B, Copel M, Chey S J. Low-voltage transistor employing a high-mobility spin-coated chalcogenide semiconductor. Adv Mater, 2005, 17: 1285–1289

    Article  Google Scholar 

  30. Mitzi D B, Copel M, Murray C E. High-mobility p-type transistor based on a spin-coated metal telluride semiconductor. Adv Mater, 2006, 18: 2448–2452

    Article  Google Scholar 

  31. Mitzi D B. Solution-processed inorganic semiconductors. J Mater Chem, 2004, 14: 2355–2365

    Article  Google Scholar 

  32. Subramanian V, Fréchet J M J, Chang P C, et al. Progress towards development of all-printed RFID tags: Materials, Processes, and Devices. Proc IEEE, 2005, 93: 1330–1338

    Article  Google Scholar 

  33. Faber H, Burkhardt M, Jedaa A, et al. Low-temperature solution-processed memory transistors based on zinc oxide nanoparticles. Adv Mater, 2009, 21: 3099–3104

    Article  Google Scholar 

  34. Schneider J J, Hoffmann R C, Engstler J, et al. Synthesis, characterization, defect chemistry, and FET properties of microwave-derived nanoscaled zinc oxide. Chem Mater, 2010, 22: 2203–2212

    Article  Google Scholar 

  35. Richter T V, Stelzl F, Schulz-Gericke J, et al. Room temperature vacuum-induced ligand removal and patterning of ZnO nanoparticles: from semiconducting films towards printed electronics. J Mater Chem, 2010, 20: 874–879

    Article  Google Scholar 

  36. Sun B, Sirringhaus H. Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett, 2005, 5: 2408–2413

    Article  Google Scholar 

  37. Huang X, Coffer J L. Emissive Er/ZnO/GeOx(SiO2) oxide nanofibers derived from anelectrospinning process. Cryst Growth Des, 2012, 12: 2362–2366

    Article  Google Scholar 

  38. Sun B, Peterson R L, Sirringhaus H, et al. Low-temperature sintering of in-plane self-assembled ZnO nanorods for solution-processed high-performance thin film transistors. J Phys Chem C, 2007, 111: 18831–18835

    Article  Google Scholar 

  39. Sun B, Sirringhaus H. Surface tension and fluid flow driven self-assembly of ordered ZnO nanorod films for high-performance field effect transistors. J Am Chem Soc, 2006, 128: 16231–16237

    Article  Google Scholar 

  40. Ohya Y, Niwa T, Ban T, et al. Thin film transistor of ZnO fabricated by chemical solution deposition. Jpn J Appl Phys, 2001, 40: 297–298

    Article  Google Scholar 

  41. Zhang X, Huang X, Li C, et al. Dye-sensitized solar cell with energy storage function through PVDF/ZnO nanocomposite counter electrode. Adv Mater, 2013, 25: 4093–4096

    Article  Google Scholar 

  42. Li C S, Li Y N, Wu Y L, et al. ZnO field-effect transistors prepared by aqueous solution-growth ZnO crystal thin film. J Appl Phys, 2007, 102: 076101

    Article  Google Scholar 

  43. Redinger D, Subramanian V. High-performance chemical-bath-deposited zinc oxide thin-film transistors. IEEE Trans Electron Devices, 2007, 54: 1301–1307

    Article  Google Scholar 

  44. Sun K, Wei W, Ding Y. Crystalline ZnO thin film by hydrothermal growth. Chem Commun, 2011, 47: 7776–7778

    Article  Google Scholar 

  45. Li C S, Qiao Y J, Li Y M. Decorating multiwalled carbon nanotubes with zinc oxide nano-crystallines through hydrothermal growth process. Sci China Tech Sci, 2012, 55: 1365–1370

    Article  Google Scholar 

  46. Wang C X, Zhang X D, Wang D F, et al. Synthesis of nanostructural ZnO using hydrothermal method for dye-sensitized solar cells. Sci China Tech Sci, 2010, 53: 1146–1149

    Article  Google Scholar 

  47. Cheng H C, Chen C F, Tsay C Y. Transparent ZnO thin film transistor fabricated by sol-gel and chemical bath deposition combination method. Appl Phys Lett, 2007, 90: 012113

    Article  Google Scholar 

  48. Ong B S, Li C S, Li Y N, et al. Stable, solution-processed, high-mobility ZnO thin-film transistors. J Am Chem Soc, 2007, 129: 2750–2751

    Article  Google Scholar 

  49. Li C S, Li Y N, Wu Y L, et al. Performance improvement for solution-processed high-mobility ZnO thin-film transistors. J Phys D-Appl Phys, 2008, 41: 125102

    Article  Google Scholar 

  50. Li C S, Li Y N, Wu Y L, et al. Fabrication conditions for solution-processed high-mobility ZnO thin-film transistors. J Mater Chem, 2009, 19: 1626–1634

    Article  Google Scholar 

  51. Hwang Y H, Seo S-J, Bae B-S. Fabrication and characterization of sol-gel-derived zinc oxide thin-film transistor. J Mater Res, 2010, 25: 695–700

    Article  Google Scholar 

  52. Tsay C-Y, Fan K-S, Wang Y-W. Transparent semiconductor zinc oxide thin films deposited on glass substrates by sol-gel process. Ceram Intern, 2010, 36: 1791–1795

    Article  Google Scholar 

  53. Sengupta J, Sahoo R K, Bardhan K K. Influence of annealing temperature on the structural, topographical and optical properties of sol-gel derived ZnO thin films. Mater Lett, 2011, 65: 2572–2574

    Article  Google Scholar 

  54. Tsay C-Y, Fan K-S, Chen S-H, et al. Preparation and characterization of ZnO transparent semiconductor thin films by sol-gel method. J Alloy Compd, 2010, 495: 126–130

    Article  Google Scholar 

  55. Singh S, Chakrabarti P. Simulation, fabrication and characterization of sol-gel deposited ZnO based thin film transistors. Sci Technol Adv Mater, 2012, 4: 199–203

    Article  Google Scholar 

  56. Takahashi Y, Ohsugi A, Arafuka T, et al. Development of new modifiers for titanium alkoxide-based sol-gel process. J Sol-Gel Sci Technol, 2000, 17: 227–238

    Article  Google Scholar 

  57. Ohya T, Kabata M, Ban T, et al. Effect of a-Hydroxyketones as chelate ligands on dip-coating of zirconia thin films. J Sol-Gel Sci Technol, 2002, 25: 43–50

    Article  Google Scholar 

  58. Yutaka O, Takatomo O, Takayuki B, et al. Microstructure of sol-gel ZnO thin films fabricated using ethanolamine and hydroxyketone modifiers. J Ceram Soc Japan, 2005, 113: 220–225

    Article  Google Scholar 

  59. Ohyama M, Kozuka H, Ypko T, et al. Preparation of ZnO films with preferential orientation by sol-gel method. J Ceram Soc Japan, 1996, 104: 296–300

    Article  Google Scholar 

  60. Ohya Y, Saiki H, Tanaka T, et al. Microstructure of TiO2 and ZnO films fabricated by the sol-gel method. J Am Ceram Soc, 1996, 79: 825–830

    Article  Google Scholar 

  61. Kozuka H, Takenaka S, Tokita H, et al. Stress and cracks in gelderived ceramic coatings and thick film formation. J Sol-Gel Sci Technol, 2003, 26: 681–686

    Article  Google Scholar 

  62. Horowitz G. Organic thin film transistors: from theory to real devices. J Mater Res, 2004, 19: 1946–1962

    Article  Google Scholar 

  63. Carcia P F, Mclean R S, Reilly M H, et al. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl Phys Lett, 2003, 82: 1117–1119

    Article  Google Scholar 

  64. Barquinha P, Pimentel A, Marques A, et al. Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide. J Non-Cryst Solids, 2006, 352: 1749–1752

    Article  Google Scholar 

  65. Fortunato E, Barquinha P, Pimentel A, et al. Recent advances in ZnO transparent thin film transistors. Thin Solid Films, 2005, 487: 205–211

    Article  Google Scholar 

  66. Hossain F M, Nishii J, Takagi S, et al. Modeling of grain boundary barrier modulation in ZnO invisible thin film transistors. Physica E, 2004, 21: 911–915

    Article  Google Scholar 

  67. Kumar A, Nathan A, Jabbour G E. Does TFT mobility impact pixel size in AMOLED backplanes? IEEE Trans Electron Devices, 2005, 52: 2386–2394

    Article  Google Scholar 

  68. Tang M, Guo Y Q, Yuan J, et al. Review of some recent progress on materials science researches in China. Sci China Chem, 2012, 55: 2497–2502

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChenSha Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Tang, D. & Li, C. The impact of solvent and modifier on ZnO thin-film transistors fabricated by sol-gel process. Sci. China Technol. Sci. 57, 2153–2160 (2014). https://doi.org/10.1007/s11431-014-5684-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5684-0

Keywords

Navigation