Skip to main content
Log in

Optimization of heat transfer and heat-work conversion based on generalized heat transfer law

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Examples of heat transfer and heat-work conversion are optimized with entropy generation and entransy loss, respectively based on the generalized heat transfer law in this paper. The applicability of entropy generation and entransy loss evaluation in these optimization problems is analyzed and discussed. The results show that the entransy loss rate reduces to the entransy dissipation rate in heat transfer processes, and that the entransy loss evaluation is effective for heat transfer optimization. However, the maximum heat transfer rate does not correspond to the minimum entropy generation rate with prescribed heat transfer temperature difference, which indicates that the entropy generation minimization is not always appropriate to heat transfer optimization. For heat-work conversion processes, the maximum entransy loss rate and the minimum entropy generation rate both correspond to the maximum output power, and they are both appropriate to the optimization of the heat-work conversion processes discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yuan F, Chen Q. Two energy conservation principles in convective heat transfer optimization. Energy, 2011, 36: 5476–5485

    Article  Google Scholar 

  2. Bejan A. General criterion for rating heat-exchanger performance. Int J Heat Mass Transfer, 1978, 21: 655–658

    Article  Google Scholar 

  3. Bejan A. Advanced Engineering Thermodynamics. 2nd ed. New York: John Wiley & Sons, 1997

    Google Scholar 

  4. Klein S A, Reindl D T. The relationship of optimum heat exchanger allocation and minimum entropy generation rate for refrigeration cycles. J Energy Res Tech Trans ASME, 1998, 120: 172–178

    Article  Google Scholar 

  5. Grazzini G, Gori F. Entropy parameters for heat exchanger design. Int J Heat Mass Transfer, 1988, 31: 2547–2554

    Article  Google Scholar 

  6. Sekulic D P, Campo A, Morales J C. Irreversibility phenomena associated with heat transfer and fluid friction in laminar flows through singly connected ducts. Int J Heat Mass Transfer, 1997, 40: 905–914

    Article  MATH  Google Scholar 

  7. Johannessen E, Nummedal L, Kjelstrup S. Minimizing the entropy production in heat exchange. Int J Heat Mass Transfer, 2002, 45: 2649–2654

    Article  MATH  Google Scholar 

  8. Myat A, Thu K, Kim Y D. A second law analysis and entropy generation minimization of an absorption chiller. Appl Therm Eng, 2011, 31: 2405–2413

    Article  Google Scholar 

  9. Mistry K H, Lienhard J H, Zubair S M. Effect of entropy generation on the performance of humidification-dehumidification desalination cycles. Int J Therm Sci, 2010, 49: 1837–1847

    Article  Google Scholar 

  10. Chen Q, Wu J, Wang M R, et al. A comparison of optimization theories for energy conservation in heat exchanger groups. Chin Sci Bull, 2011, 56: 449–454

    Article  Google Scholar 

  11. Maheshwar G, Chaudhary S, Somani S K. Performance analysis of endoreversible combined Carnot cycles based on new maximum efficient power (MEP) approach. Int J Low Carbon Tech, 2010, 5: 1–6

    Article  Google Scholar 

  12. Adavbiele A S. Optimization of thermofluid systems with second law. Int J Eng Research Africa, 2010, 1: 67–80

    Article  Google Scholar 

  13. Shah R K, Skiepko T. Entropy generation extrema and their relationship with heat exchanger effectiveness-Number of transfer unit behavior for complex flow arrangements. J Heat Transfer Tran ASME, 2004, 126: 994–1002

    Article  Google Scholar 

  14. Guo Z Y, Liang X G, Zhu H Y. Entransy-A physical quantity describing heat transfer ability (in Chinese). Prog Nat Sci, 2006, 16: 1288–1296

    Article  Google Scholar 

  15. Guo Z Y, Zhu H Y, Liang X G. Entransy-A physical quantity describing heat transfer ability. Int J Heat Mass Transfer, 2007, 50: 2545–2556

    Article  MATH  Google Scholar 

  16. Xie Z H, Chen L G, Sun F R. Constructal optimization for geometry of cavity by taking entransy dissipation minimization as objective. Sci China Ser E-Tech Sci, 2009, 52: 3413–3504

    Article  Google Scholar 

  17. Wei S H, Chen L G, Sun F R. “Volume-Point” heat conduction constructal optimization with entransy dissipation minimization objective based on rectangular element. Sci China Ser E-Tech Sci, 2008, 51: 1283–1295

    Article  MATH  Google Scholar 

  18. Wei S, Chen L, Sun F. Constructal optimization of discrete and continuous variable cross-section conducting path based on entransy dissipation rate minimization. Sci China Tech Sci, 2010, 53: 1666–1677

    Article  MATH  Google Scholar 

  19. Xiao Q H, Chen L G, Sun F R. Constructal entransy dissipation rate minimization for heat conduction based on a tapered element. Chin Sci Bull, 2011, 56: 2400–2410

    Article  Google Scholar 

  20. Chen L, Wei S, Sun F. Constructal entransy dissipation rate minimization of a disc. Int J Heat Mass Transfer, 2011, 54: 210–216

    Article  MATH  Google Scholar 

  21. Wei S, Chen L, Sun F. Constructal entransy dissipation rate minimization of round tube heat exchanger cross-section. Int J Therm Sci, 2011, 50: 1285–1292

    Article  Google Scholar 

  22. Xiao Q H, Chen L G, Sun F R. Constructal entransy dissipation rate minimization for “disc-to-point” heat conduction. Chin Sci Bull, 2011, 56: 102–112

    Article  Google Scholar 

  23. Chen Q, Ren J, Meng J A. Field synergy equation for turbulent heat transfer and its application. Int J Heat Mass Transfer, 2007, 50: 5334–5339

    Article  MATH  Google Scholar 

  24. Liu W, Liu Z, Jia H, et al. Entransy expression of the second law of thermodynamics and its application to optimization in heat transfer process. Int J Heat Mass Transfer, 2011, 54: 3049–3059

    Article  MATH  Google Scholar 

  25. Wu J, Liang X G. Application of entransy dissipation extremum principle in radiative heat transfer optimization. Sci China Ser E-Tech Sci, 2008, 51: 1306–1314

    Article  MathSciNet  MATH  Google Scholar 

  26. Cheng X T, Liang X G. Entransy flux of thermal radiation and its application to enclosures with opaque surfaces. Int J Heat Mass Transfer, 2011, 54: 269–278

    Article  MATH  Google Scholar 

  27. Guo Z Y, Liu X B, Tao W Q, et al. Effectiveness-thermal resistance method for heat exchanger design and analysis. Int J Heat Mass Transfer, 2010, 53: 2877–2884

    Article  MATH  Google Scholar 

  28. Qian X D, Li Z X. Analysis of entransy dissipation in heat exchangers. Int J Therm Sci, 2011, 50: 608–614

    Article  Google Scholar 

  29. Xu M T, Cheng L, Guo J F. An application of entransy dissipation theory to heat exchanger design (in Chinese). J Eng Thermophys, 2009, 30: 2090–2092

    Google Scholar 

  30. Xia S J, Chen L G, Sun F R. Optimization for entransy dissipation minimization in heat exchanger. Chin Sci Bull, 2009, 54: 3572–3578

    Article  Google Scholar 

  31. Cheng X T, Zhang Q Z, Liang X G. Analyses of entransy dissipation, entropy generation and entransy-dissipation-based thermal resistance on heat exchanger optimization. Appl Therm Eng, 2012, 38: 31–39

    Article  Google Scholar 

  32. Cheng X T, Liang X G. Computation of effectiveness of two-stream heat exchanger networks based on concepts of entropy generation, entransy dissipation and entransy-dissipation-based thermal resistance. Energy Convers Manage, 2012, 58: 163–170

    Article  Google Scholar 

  33. Xu M T. The thermodynamic basis of entransy and entransy dissipation. Energy, 2011, 36: 4272–4277

    Article  Google Scholar 

  34. Sahin A Z. The inherent optimality in steady conduction of heat. Int J Phys Sci, 2011, 6: 7828–7837

    MathSciNet  Google Scholar 

  35. Sahin A Z. The natural optimality in heat and fluid flow phenomena. Int J Exergy, 2011, 9: 346–354

    Google Scholar 

  36. Liu X B. Entransy Analysis of Thermal Performance for Heat Exchangers and Cooling Channel Networks (in Chinese). Dissertation of Doctoral Degree. Beijing: Tsinghua University, 2009

    Google Scholar 

  37. Wu J. Potential Energy (Entransy) in Thermal Science and Its Application (in Chinese). Dissertation of Doctoral Degree. Beijing: Tsinghua University, 2009

    Google Scholar 

  38. Xia S J, Chen L G, Sun F R. Optimization for minimizing entropy generation during heat transfer processes with heat transfer law q (Δ(T n))m (in Chinese). J Therm Sci Tech, 2008, 7: 226–230

    Google Scholar 

  39. Chen L, Li J, Sun F. Generalized irreversible heat engine experiencing a complex heat transfer law. Appl Energy, 2008, 85: 52–60

    Article  Google Scholar 

  40. Chen L, Xia S, Sun F. Optimal paths for minimizing entropy generation during heat transfer processes with a generalized heat transfer law. J Appl Phys, 2009, 105: 44907

    Article  Google Scholar 

  41. Xia S, Chen L, Sun F. Optimal paths for minimizing lost available work during heat transfer processes with complex heat transfer law. Brazilian J Phys, 2009, 39: 98–105

    Article  Google Scholar 

  42. Chen L, Sun F, Wu C. Optimal expansion of a heated working fluid with phenomenological heat transfer. Energy Convers Manage, 1998, 39: 149–156

    Article  Google Scholar 

  43. Osullivan C T. Newton’s law of cooling-A critical assessment. American J Phys, 1990, 58: 956–960

    Article  Google Scholar 

  44. Angulo-Brown F, Paez-Hernandez R. Endoreversible thermal cycle with a nonlinear heat transfer law. J Appl Phys, 1993, 74: 2216–2219

    Article  Google Scholar 

  45. Huleihil M, Andresen B. Convective heat transfer law for an endoreversible engine. J Appl Phys, 2006, 100: 014911

    Article  Google Scholar 

  46. Song H, Chen L, Sun F. Optimal expansion of a heated working fluid for maximum work output with generalized radiative heat transfer law. J Appl Phys, 2007, 102: 094901

    Article  Google Scholar 

  47. Cheng X T, Liang X G, Guo Z Y. Entransy decrease principle of heat transfer in an isolated system. Chin Sci Bull, 2011, 56: 847–854

    Article  Google Scholar 

  48. Andresen B, Berry R S, Nitzan A, et al. Thermodynamics in finite time I: the step Carnot cycle. Phys Review A, 1977, 15: 2086–2093

    Article  Google Scholar 

  49. Salamon P, Andresen B, Berry R S. Thermodynamics in finite time II: potentials for finite time processes. Phys Review A, 1977, 15: 2094–2101

    Article  Google Scholar 

  50. Berry R S, Salamon P, Heal G. On a relation between economic and thermodynamic optima. Res Energy, 1978, 1: 125–137

    Article  Google Scholar 

  51. Chen L G, Sun F R. Finite time thermodynamic theory and applications: state of the arts. Prog phys, 1998, 18: 395v422

    Google Scholar 

  52. Curzon F L, Ahlborn B. Efficiency of a Carnot engine at maximum power output. American J Phys, 1975, 43: 22–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XinGang Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, X., Wang, W. & Liang, X. Optimization of heat transfer and heat-work conversion based on generalized heat transfer law. Sci. China Technol. Sci. 55, 2847–2855 (2012). https://doi.org/10.1007/s11431-012-4915-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-4915-5

Keywords

Navigation