Skip to main content

Thermodynamic Analysis and Optimization Design of Heat Exchanger

  • Chapter
  • First Online:
Advances in Transport Phenomena 2011

Part of the book series: Advances in Transport Phenomena ((ADVTRANS,volume 3))

Abstract

In order to address the contradiction between the limited fossil fuel reserves and sharp increase of huge energy demand from the world economy and people’s daily lives, there is an urgent need to develop energy saving measures. Heat exchanger as a device for heat transfer from one medium to another is widely applied in power engineering, petroleum refineries, chemical industries, food industries, and so on. Therefore it is of great value to improve the heat exchanger performance and save energy in heat exchange processes. Recently with the aim of reducing the unnecessary heat dissipation in heat exchange processes, we have studied thermodynamic analysis and optimization design of heat exchangers. Firstly based on the genetic algorithm and the improved entropy generation number which avoids the ‘entropy generation paradoxes’ induced by the original entropy generation number, we proposed an improved entropy generation minimization approach for heat exchanger optimization design. Secondly, we found that the entransy is a state variable and the second law of thermodynamics can be described by the entransy and entransy dissipation, this work places the entransy dissipation theory on a solid thermodynamic basis. Thirdly, based on the entransy dissipation theory we derived the expression of the local entransy dissipation rate for heat convection, developed variational principles for heat transfer and showed that this principle is compatible with the Navier–Stokes–Fourier equations. Fourthly, based on the entransy dissipation theory, we proposed a heat exchanger performance evaluation criterion called the entransy dissipation number and established a principle of entransy dissipation equipartition for heat exchanger optimization designs. Finally, we developed an entransy dissipation minimization approach for heat exchanger optimization design and applied it to the tube-and-shell heat exchanger optimization design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo, J.F., Xu, M.T., Cheng, L.: Multi-objective optimization of heat exchanger design by entropy generation minimization. ASME J. Heat Transf. 132, 081801 (2010)

    Google Scholar 

  2. Guo, J.F., Cheng, L., Xu, M.T.: Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm. Appl. Therm. Eng. 29, 2954–2960 (2009)

    Google Scholar 

  3. Guo, J.F., Cheng, L., Xu, M.T.: The entropy generation minimization based on the revised entropy generation number. Int. J. Exergy 7(5), 607–626 (2010)

    Google Scholar 

  4. Xu, M.T.: The thermodynamic basis of entransy and entransy dissipation. Energy 36, 4272–4277 (2011)

    Google Scholar 

  5. Xu, M.T., Guo, J.F., Cheng, L.: Application of entransy dissipation theory in heat convection. Front. Energy Power Eng. Chin. 3(4), 402–405 (2009)

    Google Scholar 

  6. Xu, M.T.: Variational principles in terms of entransy for heat transfer. Submitted to Energy (2011)

    Google Scholar 

  7. Guo, J.F., Xu, M.T., Cheng, L.: Principle of equipartition of entransy dissipation for heat exchanger design. Sci. China Technol. Sci. 53(5), 1309–1314 (2010)

    MATH  Google Scholar 

  8. Guo, J.F., Cheng, L., Xu, M.T.: Entransy dissipation number and its application in heat exchanger performance evaluation. Chin. Sci. Bull. 54(15), 2708–2713 (2009)

    Google Scholar 

  9. Guo, J.F., Xu, M.T., Cheng, L.: The application of entransy dissipation theory in optimization design of heat exchanger. In: Proceedings of the Fourteenth International Heat Transfer Conference, Washington, DC, USA, 8–13 Aug 2020

    Google Scholar 

  10. Guo, J.F., Xu, M.T., Cheng, L.: The entransy dissipation minimization principle under given heat duty and heat transfer area conditions. Chin. Sci. Bull. 56(19), 2071–2076 (2011)

    Google Scholar 

  11. Li, X.F., Guo, J.F., Xu, M.T., Cheng, L.: Entransy dissipation minimization for optimization of heat exchanger design. Chin. Sci. Bull. 56(20), 2174–2178 (2011)

    Google Scholar 

  12. Bejan, A.: Entropy generation through heat and fluid flow. Wiley, New York (1982)

    Google Scholar 

  13. Bejan, A.: Entropy generation minimization. CRC Press, New York (1995)

    Google Scholar 

  14. Bejan, A.: Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J. Appl. Phys. 79(3), 1191–1218 (1996)

    Google Scholar 

  15. Bejan, A.: The thermodynamic design of heat and mass transfer processes and devices. Int. J. Heat Fluid Flow 8(4), 258–276 (1987)

    Google Scholar 

  16. Bejan, A.: The concept of irreversibility in heat exchanger design: counter-flow heat exchangers for gas-to-gas applications. ASME J. Heat Transf. 99, 374–380 (1977)

    Google Scholar 

  17. Yilmaz, M., Sara, O.N., Karsli, S.: Performance evaluation criteria for heat exchangers based on second law analysis. Exergy Int. J. 1(4), 278–294 (2001)

    Google Scholar 

  18. Bejan, A.: A study of entropy generation in fundamental convective heat transfer. ASME J. Heat Transf. 101(4), 718–725 (1979)

    Google Scholar 

  19. Sekulic, D.P.: The second law quality of energy transformation in a heat exchanger. ASME J. Heat Transf. 112(2), 295–300 (1990)

    Google Scholar 

  20. Witte, L.C., Shamsundar, N.: A thermodynamic efficiency concept for heat exchange devices. J. Eng. Power-Trans. ASME 105, 199–203 (1983)

    Google Scholar 

  21. Sciubba, E.: A minimum entropy generation procedure for the discrete pseudo-optimization of finned-tube heat exchangers. Rev. Gen. Therm. 35(416), 517–525 (1996)

    Google Scholar 

  22. Bejan, A.: General criteria for rating heat exchanger performance. Int. J. Mass Heat Transf. 21(5), 655–658 (1978)

    Google Scholar 

  23. Grazzini, G., Gori, F.: Entropy parameters for heat exchanger design. Int. J. Heat Mass Transf. 31(12), 2547–2554 (1988)

    Google Scholar 

  24. Zhang, L.W., Balachandar, S., Tafti, D.K., Najjar, F.M.: Heat transfer enhancement mechanisms in in-line and staggered parallel-plate fin heat exchangers. Int. J. Heat Mass Transf. 40(10), 2307–2325 (1997)

    MATH  Google Scholar 

  25. Ordonez, J.C., Bejan, A.: Entropy generation minimization in parallel-plates counterflow heat exchangers. Int. J. Energy Res. 24(10), 843–864 (2000)

    Google Scholar 

  26. Bejan, A.: Thermodynamic optimization of geometry in engineering flow systems. Exergy, Int. J. 1(4), 269–277 (2001)

    Google Scholar 

  27. Bejan, A.: Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. Int. J. Energy Res. 26(7), 545–565 (2002)

    Google Scholar 

  28. Poulikakos, D., Bejan, A.: Fin geometry for minimum entropy generation in forced convection. ASME J. Heat Transf. 104(4), 616–623 (1982)

    Google Scholar 

  29. Vargas, J.V.C., Bejan, A., Siems, D.L.: Integrative thermodynamic optimization of the crossflow heat exchanger for an aircraft environmental control system. ASME J. Heat Transf. 123(4), 760–769 (2001)

    Google Scholar 

  30. Oğulatu, R., Doba, F., Yilmaz, T.: Irreversibility analysis of cross flow heat exchangers. Energy Convers. Manage. 41(15), 1585–1599 (2000)

    Google Scholar 

  31. Reddy, B.V., Ramkiran, G., Kumar, K.A., Nag, P.K.: Second law analysis of a waste heat recovery steam generator. Int. J. Heat Mass Transf. 45(9), 1807–1814 (2002)

    MATH  Google Scholar 

  32. Sahiti, N., Krasniqi, F., Fejzullahu, X.H., Bunjaku, J., Muriqi, A.: Entropy generation minimization of a double-pipe pin fin heat exchanger. Appl. Therm. Eng. 28(17–18), 2337–2344 (2008)

    Google Scholar 

  33. Mishra, M., Das, P.K., Sarangi, S.: Second law based optimisation of crossflow plate-fin heat exchanger design using genetic algorithm. Appl. Therm. Eng. 29, 2983–2989 (2009)

    Google Scholar 

  34. Hesselgreaves, J.E.: Rationalisation of second law analysis of heat exchanger. Int. J. Heat Mass Transf. 43(22), 4189–4204 (2000)

    MATH  Google Scholar 

  35. London, A.L., Shah, R.K.: Costs of irreversibilities in heat exchanger design. Heat Transf. Eng. 4, 59–73 (1983)

    Google Scholar 

  36. Kuppan, T.: Heat Exchanger Design Handbook. Marcel Dekker Inc, New York (2000)

    Google Scholar 

  37. Shah, R.K., Sekulic, D.P.: Fundamentals of Heat Exchanger Design. John Willey, Hoboken (2003)

    Google Scholar 

  38. Kays, W.M., London, A.L.: Compact Heat Exchanger, 3rd edn. McGraw-Hill, New York (1984)

    Google Scholar 

  39. Qian, S.W.: Heat Exchanger Design Handbook. Chemical industrial Press, Beijing (2002). (in Chinese)

    Google Scholar 

  40. Babu, B.V., Munawar, S.A.: Differential evolution strategies for optimal design of shell-and-tube heat exchangers. Chem. Eng. Sci. 62, 3720–3739 (2007)

    Google Scholar 

  41. Oh, Y.H., Kim, T., Jung, H.K.: Optimal design of electric machine using genetic algorithm coupled with direct method. IEEE Trans. Mag. 35(3), 1742–1744 (1999)

    Google Scholar 

  42. Fanni, A., Marchesi, M., Serri, A., Usai, M.: A greedy genetic algorithm for continuous variables electromagnetic optimization problems. IEEE Trans. Mag. 33(2), 1900–1903 (1997)

    Google Scholar 

  43. Houck, C.R., Joines, J., Key, M.: A genetic algorithm for function optimization: a Matlab implementation. ACM Trans. Math. Softw. (1996)

    Google Scholar 

  44. Goldberg, D.E.: Genetic Algorithms I Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    Google Scholar 

  45. Holland, J.H.: Adaptation in Nature and Artificial System. The University of Michigan Press (1975)

    Google Scholar 

  46. Caputo, A.C., Pelagagge, P.M., Salini, P.: Heat exchanger design based on economic optimization. Appl. Therm. Eng. 28(10), 1151–1159 (2008)

    Google Scholar 

  47. Yun, J.Y., Lee, K.S.: Influence of design parameters on the heat transfer and flow friction characteristics of the heat exchanger with slit fins. Int. J. Heat Mass Transf. 43(14), 2529–2539 (2000)

    MATH  Google Scholar 

  48. Xu, Z.M., Yang, S.R., Chen, Z.Q.: A modified entropy generation number for heat exchagners. J. Therm. Sci. 5(4), 257–263 (1996)

    Google Scholar 

  49. Xie, G.N., Sunden, B., Wang, Q.W.: Optimization of compact heat exchangers by a genetic algorithm. Appl. Therm. Eng. 28, 895–906 (2008)

    Google Scholar 

  50. Selbas, R., Kızılkan, Ö., Reppich, M.: A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view. Chem. Eng. Process. 45, 268–275 (2006)

    Google Scholar 

  51. Mishra, M., Das, P.K., Saranqi, S.: Optimum design of crossflow plate-fin heat exchangers through genetic algorithm. Int. J. Heat Exch. 5, 379–401 (2004)

    Google Scholar 

  52. Zhou, M., Sun, S.: Genetic Algorithms: Theory and Application. National Defence Industry Press, Beijing (1999). (In Chinese)

    Google Scholar 

  53. Shi, M.Z., Wang, Z.Z.: Principles and Design of Heat Exchanger Device. Southeast university press, Nanjing (1996). (In Chinese)

    Google Scholar 

  54. Palen, J.W.: Heat Exchanger Sourcebook. Hemisphere Publishing Cor, Washington (1986)

    Google Scholar 

  55. Bell, K.J., Mueller, A.C.: Wolverine Engineering Data Book II. Wolverine Tube Inc. (2004)

    Google Scholar 

  56. State bureau of quality and technical supervision: Tubular heat exchangers, GB151-1999. Standards Press of China, Beijing (1999) (in Chinese)

    Google Scholar 

  57. Bejan, A.: Advanced Engineering Thermodynamics. Wiley, New York (1988)

    Google Scholar 

  58. Guo, J., Xu, M., Cheng, L.: The application of field synergy number in shell-and-tube heat exchanger. Appl. Energy 86, 2079–2087 (2009)

    Google Scholar 

  59. Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes, 3rd edn. Wiley, New York (1967)

    Google Scholar 

  60. Vargas, J.V.C., Bejan, A.: Thermodynamic optimization of finned crossflow heat exchanger for an aircraft environmental control system. Int. J. Heat Fluid Flow 22, 657–665 (2001)

    Google Scholar 

  61. Bejan, A.: Second law analysis in heat transfer. Energy 5, 721–762 (1980)

    Google Scholar 

  62. Raznjevic, K.: Handbook of Thermodynamic Tables, 2nd edn. Begell House Inc., New York (1995)

    Google Scholar 

  63. Hilbert, R., Janiga, G., Baron, R., Thévenin, D.: Multi-objective shape optimization of a heat exchanger using parallel genetic algorithms. Int. J. Heat Mass Transf. 49, 2567–2577 (2006)

    MATH  Google Scholar 

  64. Barakat, T.M.M., Fraga, E.S., Sørensen, E.: Multi-objective optimization of batch separation process. Chem. Eng. Process. 47(12), 2303–2314 (2008)

    Google Scholar 

  65. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester, England (2001)

    MATH  Google Scholar 

  66. Copiello, D., Fabbri, G.: Multi-objective genetic optimization of the heat transfer from longitudinal wavy fins. Int. J. Heat Mass Transf. 52, 1167–1176 (2009)

    MATH  Google Scholar 

  67. Kondepudi, D., Prigogine, I.: Modern Thermodynamics-From Heat Engines to Dissipative Structures. Wiley, Chichester (1998)

    MATH  Google Scholar 

  68. de Nevers, N., Seader, J.D.: Lost work: a measure of thermodynamic efficiency. Energy 5, 757–769 (1980)

    Google Scholar 

  69. Szargut, J.: International progress in second law analysis. Energy 5, 709–718 (1980)

    Google Scholar 

  70. Anern, J.E.: Applications of the second law of thermodynamics to cryogenics-A review. Energy 5, 891–897 (1980)

    Google Scholar 

  71. Berg, C.A.: Process integration and the second law of thermodynamics: future possibilities. Energy 5, 733–743 (1980)

    Google Scholar 

  72. Kotas, T.J.: The exergy method of thermal plant analysis. Butterworths, London (1985)

    Google Scholar 

  73. Bejan, A., Tsatsaronis, G., Moran, M.: Thermal design and optimization. Wiley, New York (1996)

    MATH  Google Scholar 

  74. Bizarro, J.P.S.: Entropy production in irreversible processes with friction. Phys. Rev. E 78, 021137 (2008)

    Google Scholar 

  75. Ben-Amotz, D., Honig, J.M.: Average entropy dissipation in irreversible mesoscopic processes. Phys. Rev. Lett. 96, 020602 (2006)

    Google Scholar 

  76. Ben-Amotz, D., Honig, J.M.: Rectification of thermodynamic inequalities. J. Chem. Phys. 118, 5932 (2003)

    Google Scholar 

  77. Curzon, F., Ahlborn, B.: Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43, 22 (1975)

    Google Scholar 

  78. Sohrab, S.H.: A scale-invariant model of statistical mechanics and modified forms of the first and the second laws of thermodynamics. Int. J. Therm. Sci. 38, 845–853 (1999)

    Google Scholar 

  79. den Broek, C.V.: Thermodynamic efficiency at maximum power. Phys. Rev. Lett. 95, 190602 (2005)

    Google Scholar 

  80. Esposito, M., Lindenberg, K.: Universality of efficiency at maximum power. Phys. Rev. Lett. 102, 130602 (2009)

    Google Scholar 

  81. Esposito, M., Kawai, R., Lindenberg, K., der Broeck, C.V.: Efficiency at maximum power of low-dissipation Carnot engines. Phys. Rev. Lett. 105, 150603 (2010)

    Google Scholar 

  82. Clausius, R.: The mechanical theory of heat-with its applications to the steam engine and to physical properties of bodies. John van Voorst, 1 Paternoster Row, MDCCCLXVII, London (1865)

    Google Scholar 

  83. Herwig, H.: The role of entropy generation in momentum and heat transfer. In: Proceedings of the 14th International Heat Transfer Conference, Paper No. IHTC14-23348, Washington DC, USA, 8–13 Aug 2010

    Google Scholar 

  84. Bertola, V., Cafaro, E.: A critical analysis of the minimum entropy production theorem and its application to heat and fluid flow. Int. J. Heat Mass Transf. 51, 1907–1912 (2008)

    MATH  Google Scholar 

  85. Shah, R.K., Skiepko, T.: Entropy generation extrema and their relationship with heat exchanger effectiveness-number of transfer unit behavior for complex flow arrangement. ASME J. Heat Transf. 126, 994 (2004)

    Google Scholar 

  86. Guo, Z.Y., Zhu, H.Y., Liang, X.G.: Entransy—A physical quantity describing heat transfer ability. Int. J. Heat Mass Transf. 50, 2545 (2007)

    MATH  Google Scholar 

  87. Guo, Z.Y., Liu, X.B., Tao, W.Q., Shah, R.K.: Effectiveness-thermal resistance method for heat exchanger design and analysis. Int. J. Heat Mass Transf. 53, 2877 (2010)

    MATH  Google Scholar 

  88. Liu, X., Wang, M., Meng, J., Ben-Naim, E., Guo, Z.Y.: Minimum entransy dissipation principle for the optimization of transport networks. Int. J. Non-Linear Sci. Numer. Simul. 11(2), 113–120 (2010)

    Google Scholar 

  89. Chen, Q., Wang, M., Pan, N., Guo, Z.Y.: Optimization principles for convective heat transfer. Energy 34(9), 1199–1206 (2009)

    Google Scholar 

  90. Chen, Q., Kang, Y., Wang, M., Pan, N., Guo, Z.Y.: A new approach to analysis and optimization of evaporative cooling system I: theory. Energy 35(6), 2448–2454 (2010)

    Google Scholar 

  91. Cheng, X., Liang, X.: Entransy flux of thermal radiation and its application to enclosures with opaque surfaces. Int. J. Heat Mass Transf. 54, 269 (2011)

    MATH  Google Scholar 

  92. Chen, L., Wei, S., Sun, F.: Constructal entransy dissipation rate minimization of a disc. Int. J. Heat Mass Transf. 54, 210 (2011)

    MATH  Google Scholar 

  93. Xu, M.T.: Variational principles in terms of entransy for heat transfer. Energy 33(1), 973 (2011)

    Google Scholar 

  94. Onsager, L.: Reciprocal relations in irreversible process. I. Phys. Rev. 37, 405–426 (1931)

    Google Scholar 

  95. Onsager, L., Machlup, S.: Fluctuations and irreversible processes. Phys. Rev. 91, 1505–1512 (1953)

    MathSciNet  MATH  Google Scholar 

  96. Attard, P.: Statistical mechanical theory for steady state systems. II. Reciprocal relations and the second entropy. J. Chem. Phys. 122, 154101 (2005)

    Google Scholar 

  97. Attard, P.: Statistical mechanical theory for steady state systems. VI. Variational principles. J. Chem. Phys. 125, 214502 (2006)

    Google Scholar 

  98. Bejan, A.: Shape and Structure: From Engineering to Nature. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  99. Hunt, K.L.C., Hunt, P.M.: Deviations from minimum entropy production at steady states of reacting chemical systems arbitrarily close to equilibrium. Physica A 154, 207–211 (1988)

    Google Scholar 

  100. Tykodi, R.J.: Thermodynamics of steady states: a weak entropy-production principle. Physica 72, 341–354 (1974)

    Google Scholar 

  101. Hillert, M., Ågren, J.: Extremum principles for irreversible processes. Acta Mater. 54, 2063–2066 (2006)

    Google Scholar 

  102. Barragan, D.: Entropy production and Newton’s cooling law. Rev. Ing. E Invest. 29, 88–93 (2009)

    Google Scholar 

  103. Attard, P.: Statistical mechanical theory for steady state systems. VI. Variational principles. J. Chem. Phys. 125, 214502 (2006)

    Google Scholar 

  104. Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401–2404 (1993)

    MATH  Google Scholar 

  105. Yilmaz, M., Sara, O.N., Karsli, S.: Performance evaluation criteria for heat exchangers based on second law analysis. Exergy, Int. J. 1, 278–294 (2001)

    Google Scholar 

  106. Wang, S.P., Chen, Q.L., Zhang, B.J.: An equation of entransy transfer and its application. Chin. Sci. Bull. 54, 3572–3578 (2009)

    Google Scholar 

  107. Chen, Q., Ren, J.X.: Generalized thermal resistance for convective heat transfer and its relation to entransy dissipation. Chin. Sci. Bull. 53, 3753–3761 (2008)

    Google Scholar 

  108. Xia, S.J., Chen, L.G., Sun, F.R.: Optimization for entransy dissipation minimizatino in heat exchanger. Chin. Sci. Bull. 54, 3587–3595 (2009)

    Google Scholar 

  109. Liu, X.B., Meng, J.A., Guo, Z.Y.: Entropy generation extremum and entransy dissipation extremum for heat exchanger optimization. Chin. Sci. Bull. 54, 943–947 (2009)

    Google Scholar 

  110. Wu, J., Liang, X.G.: Application of entransy dissipation extremum principle in radiative heat transfer optimization. Sci. China Ser. E: Technol. Sci. 51, 1306–1314 (2008)

    MathSciNet  MATH  Google Scholar 

  111. Hausen, H.: Heat Transfer in Counter Flow, Parallel Flow and Cross Flow. McGraw-Hill Inc., New York (1983)

    Google Scholar 

  112. Tondeur, D., Kvaalen, E.: Equipartition of entropy production: an optimality criterion for transfer and separation process. Ind. Eng. Chem. Res. 26, 50–56 (1987)

    Google Scholar 

  113. Sauar, E., Ratkje, S.K., Lien, K.M.: Equipartition of forces: a new principle for process design and optimization. Ind. Eng. Chem. Res. 35, 4147–41533 (1996)

    Google Scholar 

  114. Balkan, F.: Comparison of entropy minimization principles in heat exchange and a short-cut principle: EoTD. Int. J. Energy Res. 27, 1003–1014 (2003)

    Google Scholar 

  115. Guo, Z.Y., Li, Z.X., Zhou, S.Q., Daxi, X.: Principle of uniformity of temperature difference field in heat exchanger. Sci. China Tech. Sci. 39(1), 68–75 (1996)

    Google Scholar 

  116. Guo, Z.Y., Cheng, X.G., Xia, Z.Z.: Least dissipation principle of heat transport potential and its application in heat conduction optimization. Chin. Sci. Bull. 48(4), 406–410 (2003)

    Google Scholar 

  117. Han, G.Z., Guo, Z.Y.: Physical mechanism of heat conduction ability dissipation and its analytical expression. Proc. CSEE 27, 98–102 (2007)

    Google Scholar 

  118. Wei, S.H., Chen, L.G., Sun, F.R.: “Volume–Point” heat conduction constructal optimization with entransy dissipation minimization objective based on rectangular element. Sci. China Tech. Sci. 51(8), 1283–1295 (2008)

    MATH  Google Scholar 

  119. Wei, S.H., Chen, L.G., Sun, F.R.: Constructal multidisciplinary optimization of electromagnet based on entransy dissipation minimization. Sci. China Tech. Sci. 52(10), 2981–2989 (2009)

    MATH  Google Scholar 

  120. Johannessen, E., Nummedal, L., Kjelstrup, S.: Minimizing the entropy production in heat exchanger. Int. J. Heat Mass Transf. 45, 2649–2654 (2002)

    MATH  Google Scholar 

  121. Bedeaux, D., Standaert, F., Hemmes, K., Kjelstrup, S.: Optimization of process by equipartition. J. Non Equilibr. Thermodyn. 24, 242–259 (1999)

    MATH  Google Scholar 

  122. Mahammed, O.A., Uler, G.F.: A hybrid technique for the optimal design of electromagnetic devices using direct search and genetic algorithms. IEEE Trans. Mag. 33, 1931–1934 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingtian Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xu, M., Guo, J., Li, X. (2014). Thermodynamic Analysis and Optimization Design of Heat Exchanger. In: Wang, L. (eds) Advances in Transport Phenomena 2011. Advances in Transport Phenomena, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-01793-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01793-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01792-1

  • Online ISBN: 978-3-319-01793-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics