Skip to main content
Log in

Double network hydrogel with high mechanical strength: Performance, progress and future perspective

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

With high water content (∼90 wt%) and significantly improved mechanical strength (∼MPa), double network (DN) hydrogels have emerged as promising biomaterials with widespread applications in biomedicine. In recent years, DN hydrogels with extremely high mechanical strength have achieved great advance, and scientists have designed a series of natural and biomimetic DN hydrogels with novel functions including low friction, low wear, mechanical anisotropy and cell compatibility. These advances have also led to new design of biocompatible DN hydrogels for regeneration of tissues such as cartilage. In this paper, we reviewed the strategies of designing high-strength DN hydrogel and analyzed the factors that affect DN hydrogel properties. We also discussed the challenges and future development of the DN hydrogel in view of its potential as biomaterials for their biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joseph M M. Biomechanics of Cartilage. Biomechanical Principles. Philadelphia: Williams and Wilkins, Part I Chapter 5, 2004. 66–79

    Google Scholar 

  2. Kerin A J, Wisnom M R, Adams M A. The compressive strength of articular cartilage. Proc Instn Mech Engrs, Part H, 1998, 212: 273–280

    Article  Google Scholar 

  3. Sha C H, Chen M S, W J, et al. The experimental study of biomechanical characteristics of human forearm tendon (in Chinese). Sports Sci, 2010, 30(3): 42–45

    Google Scholar 

  4. Chen Y M, Gong J P, Osada Y. Gel: A potential material as artificial soft tissue. In: Matyjaszewski K, Gnanou Y, Leibler L, eds. Macromolecular Engineering: Precise Synthesis, Materials Properties, Applications. Weinham: Wiley -Vch, 2006. 2689–271828

    Google Scholar 

  5. Shao L Q, Zhao Y M, Zhao X Y. The measurement of tensile properties and Shore hardness of SY-1 and MDX4-4210 of silicone rubber (in Chinese). J Pract Stomatol, 2004, 20: 201–203

    Google Scholar 

  6. Xiong D S. The friction and wear properties of ultra-high molecular weight polyethylene after ion implantation (in Chinese). Tribology, 2004, 24: 244–247

    Google Scholar 

  7. Chen Z, Wang J X, Qin D T. The mechanical performance and application of ultra-high molecular weight polyethylene (in Chinese). Mater Mech Eng, 2001, 25(8): 01–03

    Google Scholar 

  8. Wang Y, Xiong D S. The improving of the friction properties of stainless steel using laser texturing (in Chinese). J Harbin Inst Tech, 2006, 38: 137–139

    Google Scholar 

  9. Osada Y, Kajiwara K. Gels Handbook. New York: Academic Press, 2001

    Google Scholar 

  10. Tanaka Y, Nishio I, Sun S T, et al. Polyurethanes as specialty chemicals: Principles and applications. Science, 1973, 218: 467–469

    Article  Google Scholar 

  11. Osada Y, Okuzaki H, Hori H. A polymer gel with electrically driven motility. Nature, 1992, 355: 242–244

    Article  Google Scholar 

  12. Osada Y, Matsuda A. Shape-memory gel with order-disorder transition. Nature, 1995, 376: 219–221

    Article  Google Scholar 

  13. Fei R C, George J T, Park J, et al. Thermoresponsive nanocomposite double network hydrogels. Soft Matter, 2012, 8: 481–487

    Article  Google Scholar 

  14. Naficy S, Razal J M, Whitten P G, et al. A pH-sensitive, strong double-network hydrogel: Poly (ethylene glycol) methyl ether methacrylates-poly (acrylic acid). J Ploym Sci Pol Phys, 2011, 10: 1002–1009

    Google Scholar 

  15. Gilbert P M, Havenstrite K L, Magnusson K E G, et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science, 2010, 329: 1078–1081

    Article  Google Scholar 

  16. Zhang Y L, Tao L, Li S X, et al. Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromol, 2011, 12: 2894–2901

    Article  Google Scholar 

  17. Mao L J, Hu Y J, Piao Y S, et al. Structure and character of artificial muscle model constructed from fibrous hydrogel. Curr Appl Phys, 2005, 5: 426–428

    Article  Google Scholar 

  18. Pogue B W, Patterson M S. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J Biomed Opt, 2006, 11: 041, 102–116

    Google Scholar 

  19. Benoiti S W D, Schwartz M P, Durney A R, et al. Small functional groups for controlle differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mat, 2008, 7: 816–823

    Article  Google Scholar 

  20. Gerecht S, Burdick J A, Ferreira L S, et al. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci, 2007, 104: 11298–11303

    Article  Google Scholar 

  21. Cushing M C, Anseth K S. Hydrogel cell cultures. Science, 2007, 316: 1133–1134

    Article  Google Scholar 

  22. Simha N K, Carlson C S, Lewis J L. Evaluation of fracture toughness of cartilage by micropenetration. J Mater Sci Mater, 2004, 15: 631–639

    Article  Google Scholar 

  23. McCutchen C W. Lubrication of Joints, the Joints and Synovial Fluid. New York: Academic Press, 1978

    Google Scholar 

  24. Fukuda A, Kato K, Hasegawa M, et al. Enhanced repair of large osteochondral defects using a combination of artificial cartilage and basic fibroblast growth factor. Biomater, 2005, 26: 4301–4308

    Article  Google Scholar 

  25. Furukawa H, Horie K, Nozaki R, et al. Swelling-induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scattering. Phys Rev E, 2003, 68:031406.1–031406.14

    Google Scholar 

  26. Yoshida R, Uchida K, Kaneko Y, et al. Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature, 1995, 374: 240–242

    Article  Google Scholar 

  27. Okumura Y, Ito K. The polyrotaxane gel: A topological gel by figure-of-eight cross-links. Adv Mater, 2001, 13: 485–487

    Article  Google Scholar 

  28. Haraguchi K, Takehisa T. Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater, 2002, 14: 1120–1124

    Article  Google Scholar 

  29. Haraguchi K, Takehisa T, Fan S. Effects of clay content on the properties of nanocomposite hydrogels composed of poly (N-isopropylacrylamide) and clay. Macromol, 2002, 35: 10162–10171

    Article  Google Scholar 

  30. Gong J P. Why are double network hydrogels so tough. Soft Matter, 2010, 6: 2583–2590

    Article  Google Scholar 

  31. Gong J P, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength. Adv Mater, 2003, 15: 1155–1158

    Article  Google Scholar 

  32. Nakajima T, Furukawa H, Tanaka Y, et al. True chemical structure of double network hydrogels. Macromol, 2009, 42: 2184–2189

    Article  Google Scholar 

  33. Na Y H, Kurokawa T, Katsuyama Y, et al. Structural characteristics of double network gels with extremely high mechanical strength. Macromol, 2004, 37: 5370–5374

    Article  Google Scholar 

  34. Tanaka Y, Kuwabara R, Na Y H, et al. Determination of fracture energy of high strength double network hydrogels. J Phys Chem B, 2005, 109: 11559–11562

    Article  Google Scholar 

  35. Tsukeshiba H, Huang M, Na Y H, et al. Effect of polymer entanglement on the toughening of double network hydrogels. J Phys Chem B, 2005, 109: 16304–16309

    Article  Google Scholar 

  36. Kurokawa T, Furukawa H, Wang W, et al. Formation of a strong hydrogel-porous solid interface via the double-network principle. Acta Biomater, 2010, 6: 1353–1359

    Article  Google Scholar 

  37. Yasuda K, Gong J P, Katsuyama Y, et al. Biomechanical properties of high-toughness double network hydrogels. Biomater, 2005, 26: 4468–4475

    Article  Google Scholar 

  38. Bachrach N M, Valhmu W B, Stazzone E, et al. Changes in proteoglycan synthesis of chondrocytes in articular cartilage are associated with the time-dependent changes in their mechanical environment. J Biomech, 1995, 28: 1561–1569

    Article  Google Scholar 

  39. Yan D, Zhou G L, Cao Y L. The relationship research of articular cartilage mechanical properties and biological structures (in Chinese). J Shanghai Jiaotong Univ ( Med Sci), 2009, 29: 341–345

    Google Scholar 

  40. Khalsa P S, Eisenberg S R. Compressive behavior of articular cartilage is not completely explained by proteoglycan osmotic pressure. J Biomech, 1997, 30: 589–594

    Article  Google Scholar 

  41. Wainwright S A. Axis and Circumference: The Cylindrical Shape of Plants and Animals. Cambridge: Harvard University Press, 1988

    Google Scholar 

  42. Saito J J, Furukawa H, Kurokaw T, et al. Robust bonding and one-step facile synthesis of tough hydrogels with desirable shape by virtue of the double network structure. Ploym Chem, 2011, 2: 575–580

    Article  Google Scholar 

  43. Hu J, Hiwatashi K, Kurokawa T, et al. Microgel-reinforced hydrogel films with high mechanical strength and their visible mesoscale fracture structure. Macromol, 2011, 44: 7775–7781

    Article  Google Scholar 

  44. Nakajima T, Takedomi N, Kurokawa T, et al. A facile method for synthesizing free-shaped and tough double network hydrogels using physically crosslinked poly (vinyl alcohol) as an internal mold. Ploym Chem, 2010, 1: 693–697

    Article  Google Scholar 

  45. Nakayama A, Kakugo A, Gong J P, et al. High mechanical strength double-network hydrogel with bacterial cellulose. Adv Fun Mater, 2004, 14: 1124–1128

    Article  Google Scholar 

  46. Olsson R T, AziziSamir M A S, Salazar-Alvarez G, et al. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol, 2010, 5: 584–588

    Article  Google Scholar 

  47. Haque M A, Kamita G, Kurokawa T, et al. Unidirectional alignment of lamellar bilayer in hydrogel: One-dimensional swelling, anisotropic modulus, and stress/strain tunable structural color. Adv Mater, 2010, 22: 5110–5114

    Article  Google Scholar 

  48. Haque M A, Kurokawa T, Kamita G, et al. Rapid and reversible tuning of structural color of a hydrogel over the entire visible spectrum by mechanical stimulation. Chem Mater, 2011, 23: 5200–5207

    Article  Google Scholar 

  49. Yang W, Furukawa H, Gong J P. Highly extensible double-network gels with self-assembling anisotropic structure. Adv Mater, 2008, 20: 4499–4503

    Article  Google Scholar 

  50. Dobashi T, Furusawa K, Kita E, et al. DNA liquid crystalline gel as adsorbent of carcinogenic agent. Langmuir, 2007, 23: 1303–1306

    Article  Google Scholar 

  51. Raviv U, Giasson S, Kampf N, et al. Lubrication by charged polymers. Nature, 2003, 425: 163–165

    Article  Google Scholar 

  52. Gong J P, Kurokawa T, Narita T, et al. Synthesis of hydrogels with extremely low surface friction. J Am Chem Soc, 2001, 123: 5582–5583

    Article  Google Scholar 

  53. Ohsedo Y, Takashina R, Gong J P, et al. Surface friction of hydrogels with well-defined polyelectrolyte brushes. Langmuir, 2004, 20: 6549–6555

    Article  Google Scholar 

  54. Kaneko D, Tada T, Kurokawa T, et al. Mechanically strong hydrogels with ultra-low frictional coefficients. Adv Mater, 2005, 17: 535–538

    Article  Google Scholar 

  55. Yasuda K, Gong J P, Katsuyama Y, et al. Biomechanical properties of high-toughness double network hydrogels. Biomater, 2005, 26: 4469–4475

    Article  Google Scholar 

  56. Chen Y M, Tanaka M, Gong J P, et al. Platelet adhesion to human umbilical vein endothelial cells cultured on anionic hydrogel scaffolds. Biomater, 2007, 28: 1752–1760

    Article  Google Scholar 

  57. Yang J J, Chen Y M, Gong J P. Gene expression, glycocalyx assay, and surface properties of human endothelial cells cultured on hydrogel matrix with sulfonic moiety: Effect of elasticity of hydrogel. J Biomed Mater Res Part A, 2010, 95A: 531–542

    Article  Google Scholar 

  58. Chen Y M, Ogawa R, Kakugo A, et al. Dynamic cell behavior on synthetic hydrogels with different charge densities. Soft Matter, 2009, 5: 1804–1811

    Article  Google Scholar 

  59. Chen Y M, Shiraishi N, Satokawa H, et al. Cultivation of endothelial cells on adhesive protein-free synthetic polymer gels. Biomater, 2005, 28: 4588–4596

    Article  Google Scholar 

  60. Yang J J, Chen Y M, Gong J P. Spontaneous redifferentiation of dedifferentiated human articular chondrocytes on hydrogel surfaces. Tissue Eng, 2010, 16: 2529–2540

    Article  Google Scholar 

  61. Kwon H J, Yasuda K, Ohmiya Y, et al. In vitro differentiation of chondrogenic ATDC5 cells is enhanced by culturing on synthetic hydrogels with various charge densities. Acta Biomater, 2010, 6: 494–501

    Article  Google Scholar 

  62. Liu J F, Chen Y M, Yang J J, et al. Dynamic behavior and spontaneous differentiation of mouse embryoid bodies on hydrogel substrates of different surface charge and chemical structures. Tissue Eng Part A, 2011, 17: 2343–2357

    Article  Google Scholar 

  63. Chen Y M, Gong J P, Tanaka M, et al. Tuning of cell proliferation on tough gels by critical charge effect. J Biomed Mater Res, Part A, 2009, 88A: 74–83

    Article  Google Scholar 

  64. Tanabe Y, Yasuda K, Azuma C, et al. Biological responses of novel high-toughness double network hydrogels in muscle and the subcutaneous tissues. J Mater Sci Mater Med, 2008, 19: 1379–1387

    Article  Google Scholar 

  65. Azuma C, Yasuda K, Tanabe Y, et al. Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. J Biomed Mater Res A, 2007, 81A: 373–380

    Article  Google Scholar 

  66. Yasuda K, Kitamura N, Gong J P, et al. A novel double-network hydrogel induces spontaneous articular cartilage regeneration in vivo in a large osteochondral defect. Macromol Biosci, 2009, 9(4): 307–316

    Article  Google Scholar 

  67. Huang M, Furukawa H, Tanaka Y, et al. Importance of entanglement between first and second components in high-strength double network gels. Macromol, 2007, 40: 6658–6664

    Article  Google Scholar 

  68. Tominaga T, Tirumala V R, Lin E K, et al. The molecular origin of enhanced toughness in double-network hydrogels: A neutron scattering study. Polymer, 2007, 48: 7449–7454

    Article  Google Scholar 

  69. Tominaga T, Tirumala V R, Lee S, et al. Thermodynamic interactions in double-network hydrogels. J Phys Chem B, 2008, 112: 3903–3909

    Article  Google Scholar 

  70. Wang Q G, Mynar J L, Yoshida M, et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature, 2010, 463: 339–343

    Article  Google Scholar 

  71. Nowak A P, Breedveld V, Pakstis L, et al. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature, 2002, 417: 424–428

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YongMei Chen or Feng Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Dong, K., Liu, Z. et al. Double network hydrogel with high mechanical strength: Performance, progress and future perspective. Sci. China Technol. Sci. 55, 2241–2254 (2012). https://doi.org/10.1007/s11431-012-4857-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-4857-y

Keywords

Navigation