Skip to main content
Log in

Bifurcation and chaos of an airfoil with cubic nonlinearity in incompressible flow

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Using a combination of analytical and numerical methods, the paper studies bifurcations and chaotic motions of a two-dimensional airfoil with cubic nonlinearity in incompressible flow. One type of critical points (characterized by a negative eigenvalue, a simple zero eigenvalue and a pair of purely imaginary eigenvalues) for the bifurcation response equations is considered. With the aid of the normal form theory, the explicit expressions of the critical bifurcation lines leading to incipient and secondary bifurcations are obtained. The stability of the bifurcation solutions is also investigated. By using the undetermined coefficient method, the homoclinic orbit is found, and the uniform convergence of the homoclinic orbit series expansion is proved. It analytically demonstrates that there exists a homoclinic orbit joining the initial equilibrium point to itself, therefore Smale horseshoe chaos occurs for this system via Si’lnikov criterion. The system evolves into chaotic motion through period-doubling bifurcation, and is periodic again as the dimensionless airflow speed increases. Numerical simulations are also given, which confirm the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee B H K. Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos. Progr Aerosp Sci, 1999, 35(3): 205–334

    Article  Google Scholar 

  2. Zhao L C, Yang Z C. Chaotic motions of an airfoil with non-linear stiffness in incompressible flow. J Sound Vib, 1990, 138(2): 245–254

    Article  MathSciNet  Google Scholar 

  3. Liu J K, Zhao L C. Bifurcation analysis of airfoils in incompressible flow. J Sound Vib, 1992, 154(1): 117–124

    Article  MATH  Google Scholar 

  4. Price S J, Alighanbari H, Lee B H K. The aeroelastic response of a two-dimensional airfoil with bilinear and cubic structural nonlinearities. J Fluid Struct, 1995, 9(2): 175–193

    Article  Google Scholar 

  5. Alighanbari H, Price S J. The post-Hopf-bifurcation response of an airfoil in incompressible two-dimensional flow. Nonl Dyn, 1996, 10(4): 381–400

    Article  Google Scholar 

  6. Raghothama A, Narayanan S. Nonlinear dynamics of a two-dimensional airfoil by increment harmonic balance method. J Sound Vib, 1999, 226(3): 493–517

    Article  Google Scholar 

  7. Cai M, Liu J K, Li J. Incremental harmonic balance method for airfoil flutter with multiple strong nonlinearities. Appl Math Mech, 2006, 27(7): 953–958

    Article  MATH  Google Scholar 

  8. Liu L, Wong Y S, Lee B H K. Application of the center manifold theory in nonlinear aeroelasticity. J Sound Vib, 2000, 234(4): 641–659

    Article  MathSciNet  Google Scholar 

  9. Liu L, Dowell E H, Thomas J P. A high dimensional harmonic balance approach for an aeroelastic airfoil with cubic restoring forces. J Fluid Struct, 2007, 23(3): 351–363

    Article  MATH  Google Scholar 

  10. Shahrasd P, Mahzoon M. Limit cycle flutter of airfoils in steady and unsteady flows. J Sound Vib, 2002, 256(2): 213–225

    Article  Google Scholar 

  11. Ding Q, Wang D L. The flutter of an airfoil with cubic structural and aerodynamic non-linearities. Aerosp Sci Technol, 2006, 10(5): 427–434

    Article  MATH  Google Scholar 

  12. Chen Y M, Liu J K. Supercritical as well as subcritical Hopf bifurcation in nonlinear flutter systems. Appl Math Mech, 2008, 29(2): 199–206

    Article  MATH  Google Scholar 

  13. Kim S H, Lee I. Aeroelastic analysis of a flexible airfoil with a freeplay nonlinearity. J Sound Vib, 1995, 193(4): 823–846

    Article  Google Scholar 

  14. Yang Y R. KBM Method of analyzing limit cycle flutter of a wing of an external store and comparison with wind tunnel test. J Sound Vib, 1995, 187(2): 271–280

    Article  Google Scholar 

  15. Tang D, Dowell E H, Virgin L N. Limit cycle behavior of an airfoil with a control surface. J Fluid Struct, 1998, 12(7): 839–858

    Article  Google Scholar 

  16. Dimitrijevic Z, Mortchewicz G D, Poirion F. Nonlinear dynamics of a two dimensional airfoil with freeplay in an inviscid compressible flow. Aerosp Sci Technol, 2000, 4(2): 125–133

    Article  MATH  Google Scholar 

  17. Abbas L K, Chen Q, O’donnell K, et al. Numerical studies of a non-linear aeroelastic system with plunging and pitching freeplays in supersonic/hypersonic regimes. Aerosp Sci Technol, 2007, 11(5): 405–418

    Article  Google Scholar 

  18. Zhao D M, Zhang Q C, Tan Y. Random flutter of a 2-DOF nonlinear airfoil in pitch and plunge with freeplay in pitch. Nonl Dyn, 2009, 58(4): 643–654

    Article  MATH  Google Scholar 

  19. Wu C, Zhang H M, Fang T. Flutter analysis of an airfoil with bounded random parameters in incompressible flow via Gegenbauer polynomial approximation. Aerosp Sci Technol, 2007, 11(7–8): 518–526

    Article  MATH  Google Scholar 

  20. Sarkar S, Witteveen J A S, Loeven A, et al. Effect of uncertainty on the bifurcation behavior of pitching airfoil stall flutter. J Fluid Struct, 2009, 25(2): 304–320

    Article  Google Scholar 

  21. Poirel D, Price S J. Bifurcation characteristics of a two-dimensional structurally non-linear airfoil in turbulent flow. Nonl Dyn, 2007, 48(4): 423–435

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhao Y H, Hu H Y. Aeroelastic analysis of a non-linear airfoil based on unsteady vortex lattice model. J Sound Vib, 2004, 276(3–5): 491–510

    Article  Google Scholar 

  23. Zhao Y H. Stability of a two-dimensional airfoil with time-delayed feedback control. J Fluid Struct, 2009, 25(1): 1–25

    Article  Google Scholar 

  24. Zhou T S, Tang Y. Chen’s attractor exists. Int J Bif Chao 2004, 14(9): 3167–3177

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhou T S, Chen G R, Yang Q G. Constructing a new chaotic system based on the Si’lnikov criterion. Chao Sol Fract, 2004, 19(4): 985–993

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhou T S, Chen G R, Celikovsky S. Si’lnikov chaos in the generalized Lorenz canonical form of dynamical systems. Nonl Dyn, 2005, 39(4): 319–334

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang J W, Zhao M C, Zhang Y B. Si’lnikov-type orbits of Lorenz-family systems. Phys A, 2007, 37(4): 438–446

    MathSciNet  Google Scholar 

  28. Zhou L Q, Chen F Q. Hopf bifurcation and Si’lnikov chaos of Genesio system. Chao Sol Fract, 2009, 40(3): 1413–1422

    Article  MATH  Google Scholar 

  29. Zhang Q C, Liu H Y, Ren H D. Local bifurcation for airfoil with cubic nonlinearities (in Chinese). J Tianjin Univ, 2004, 37(11): 178–182

    Google Scholar 

  30. Ding Q, Wang D L. Study on flutter of an airfoil with cubic non-linearity using normal form direct method (in Chinese). Flight Dyn, 2005, 23(3): 85–88

    Google Scholar 

  31. Yu P, Bi Q S. Analysis of non-linear dynamics and bifurcations of a double pendulum. J Sound Vib, 1998, 217(4–5): 691–736

    Article  MathSciNet  Google Scholar 

  32. Yu P, Huseyin K. A perturbation analysis of interactive static and dynamic bifurcations. IEEE Trans Autom Cont, 1988, 33(1): 28–41

    Article  MATH  MathSciNet  Google Scholar 

  33. Kovaccic G, Wiggins S. Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation. Phys D, 1992, 57(1–2): 185–225

    Article  MathSciNet  Google Scholar 

  34. Guo B L, Gao P, Chen H L. Infinite Dimensional Near Integrable Dynamic Systems (in Chinese). Beijing: Defense Industry Publishing House, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to FangQi Chen or LiangQiang Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F., Zhou, L. & Chen, Y. Bifurcation and chaos of an airfoil with cubic nonlinearity in incompressible flow. Sci. China Technol. Sci. 54, 1954–1965 (2011). https://doi.org/10.1007/s11431-011-4456-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4456-3

Keywords

Navigation