Skip to main content
Log in

Investigation on the three-dimensional multiphase conjugate conduction problem inside porous wick with the lattice Boltzmann method

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

A lattice Boltzmann model is developed for investigating the heat conduction process inside the three-dimensional random porous media. Combined with the algorithm for the reconstruction of the three-dimensional porous media, this model is used to investigate the transient heat conduction process inside the porous wick of CPLs/LHPs, which is vital for analyzing the startup stability of a CPL/LHP. The temperature distribution inside the porous wick is obtained and the influence of the porosity and the heat load on the conduction process also is investigated using the present model. The present model is applicable to predicting the effective conductivity of such a complex structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Theodore D S. NASA thermal control technologies for robotic spacecraft. Appl Therm Eng, 2003, 23(9): 1055–1065

    Article  Google Scholar 

  2. Yu F M. Review loop heat pipes. Appl Therm Eng, 2005, 25(2): 635–657

    Article  Google Scholar 

  3. Cao Y, Faghri A. Analytical solutions of flow and heat transferin a porous structure with partial heating and evaporation on the upper surface. Int J Heat Mass Transf, 1994, 36(10): 1525–1533

    Article  Google Scholar 

  4. Cao Y, Faghri A. Conjugate analysis of a flat-plate type evaporator for capillary pumped loop with three-dimensional vapor flow in the groove. Int J Heat Mass Transf, 1994, 37(3): 401–409

    Article  Google Scholar 

  5. Tarik K, John G. Numerical analysis of heat and mass transfer in the capillary structure of a loop heat pipe. Int J Heat Mass Transf, 2006, 49(17–18): 3211–3220

    Google Scholar 

  6. Chuan R, Wu Q S, Hu M B. Heat transfer with flow and evaporation in loop heat pipe’s wick at low or moderate heat fluxes. Int J Heat Mass Transf, 2007, 50(11–12): 2296–2308

    MATH  Google Scholar 

  7. Khrustalev D, Faghri A. Heat transfer in the inverted meniscus type evaporator at high heat fluxes. Int J Heat Mass Transf, 1995, 38(16): 3091–3101

    Article  Google Scholar 

  8. Zhao T S, Liao Q. On capillary-driven flow and phase-change heat transfer in a porous structure heated by a finned surface: measurements and modeling. Int J Heat Mass Transf, 2000, 43(7): 1141–1155

    Article  MATH  Google Scholar 

  9. Huang X M, Liu W, Nakayama A, et al. Modeling for heat and mass transfer with phase change in porous wick of CPL evaporator. Heat Mass Transfer, 2005, 41(7): 667–673

    Article  Google Scholar 

  10. Figus C, Le Bray Y, Bories S, et al. Heat and mass transfer with phase change in a porous structure partially heated: continuum model and pore network simulations. Int J Heat Mass Transf, 1999, 42(14): 2557–2569

    Article  Google Scholar 

  11. Benzi R, Succi S, Vergassola M. The lattice-Boltzmann equation: theory and applications. Phys Report, 1992, 222(3): 145–197

    Article  Google Scholar 

  12. Qian Y, Succi S, Orszag S. Resent advances in lattice Boltzmann computing. Annu Rev Comp Phys, 1995, 39(11): 195–242

    MathSciNet  Google Scholar 

  13. Chen S, Doolen G. Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech, 1998, 30(1): 329–364

    Article  MathSciNet  Google Scholar 

  14. Pan C, Hilpert M, Miller C T. Lattice-Boltzmann simulation of two-phase flow in porous media. Water Resour Res, 2004, 40(1): 1–14

    Article  Google Scholar 

  15. Pan C, Prins J F, Miller C T. A high-performance lattice Boltzmann implementation to model flow in porous media. Comput Phys Commun, 2004, 158(2): 89–105

    Article  Google Scholar 

  16. Orazio A D, Succi S, Arrighetti C. Lattice Boltzmann simulation of open flows with heat transfer. Phys Fluids, 2003, 15(9): 2778–2781

    Article  Google Scholar 

  17. He X, Chen S, Doolen G. A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys, 1998, 146(1): 282–300

    Article  MATH  MathSciNet  Google Scholar 

  18. Toffoli T, Margolus N. Invertible cellular automata: A review. Physica D, 1990, 45(1–3): 229–253

    Article  MATH  MathSciNet  Google Scholar 

  19. Guo Z L, Zheng C G., Li Q, et al. Lattice Boltzmann Method For Hydrodynamics (in Chinese). Hubei: Technology Press, 2002. 111–125

    Google Scholar 

  20. Kang Q J, Zhang D X, Lichtner P C, et al. Lattice Boltzmann model for crystal growth from supersaturated solution. Geophys Res Lett, 2004, 31(21): L21604

    Article  Google Scholar 

  21. Wang J, Wang M, Li Z. A lattice Boltzmann algorithm for fluid-solid conjugate heat transfer. Int J Therm Sci, 2007, 46(3): 228–234

    Article  Google Scholar 

  22. D’Orazio A, Corcione M, Celata G P. Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition. Int J Therm Sci, 2004, 43(6): 575–586

    Article  Google Scholar 

  23. Guo Z L, Shi B C, Zheng C G. A coupled lattice BGK model for Boussinesq equations. Int J Numer Methods Fluids, 2002, 39(4): 325–342

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhao K, Li Q, Xuan Y M. A reconstruction technique for three dimensional porous media from 2D image. In: The 2007 Asian Symposium of Computational Heat Transfer and Fluid Flow. Xi’an, 2007

  25. Wang M, Chen S Y. Electroosmosis in homogeneously charger micro and nanoscale random porous media. J Colloid Interf Sci, 2007, 314(1): 264–273

    Article  Google Scholar 

  26. Chen X, Han P. A note on the solution of conjugate heat transfer problems using SIMPLE-like algorithms. Int J Heat Fluid Flow, 2000, 21(4): 463–467

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 50576038), and Program for New Century Excellent Talents in University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, K., Li, Q. & Xuan, Y. Investigation on the three-dimensional multiphase conjugate conduction problem inside porous wick with the lattice Boltzmann method. Sci. China Ser. E-Technol. Sci. 52, 2973–2980 (2009). https://doi.org/10.1007/s11431-009-0103-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-009-0103-7

Keywords

Navigation