Skip to main content
Log in

Climate-driven acceleration of glacier mass loss on global and regional scales during 1961–2016

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

During the past decades, glacier mass loss is becoming increasingly significant worldwide but knowledge about the acceleration is still limited despite its potentially profound impacts on sea level rise, water resources availability and glacial hazards. In this study, we analyzed the acceleration of glacier mass loss based on in-situ measurements and on the latest compilation dataset of direct and geodetic observations for the period 1961–2016. The results showed that the rate of glacier mass loss has increased worldwide during the past decades. At the global scale, the rate of glacier mass loss has been accelerating at 5.76±1.35 Gt a−2 as well as 0.0074±0.0016 m w.e.a−2 on mass balance (refer to the area-averaged mass change value) during the whole period. At regional scales, for mass change rate, the heavily glacierized regions excluding Antarctic and Subantarctic exhibited a larger acceleration compared to other regions. The highest acceleration of mass change was found in Alaska glaciers (1.33±0.47 Gt a−2) over the full period. As for mass balance, high acceleration occurred on the regions with small glaciers as well as on the heavily glacierized regions. Central Europe exhibited the highest acceleration (0.024±0.0088 m w.e.a−2) during 1961–2016. High level of consistency between the acceleration and temperature implies that climate warming had a significant effect on the accelerating of glacier mass loss. Moreover, acceleration of the contribution from the Greenland ice sheet (0.028 to 0.070 mm a−2) and Antarctic ice sheet (0.023 to 0.058 mm a−2) to sea level rise exceeds acceleration of the contribution from global glaciers (0.019±0.013 mm a−2). These results will improve our understanding of the glacier retreat in response to climate change and provide critical information for improving mitigation strategies for impacts that may be caused by glacier melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahr D B, Dyurgerov M F, Meier M F. 2009. Sea-level rise from glaciers and ice caps: A lower bound. Geophys Res Lett, 36: L03501

    Article  Google Scholar 

  • Barry R G. 2006. The status of research on glaciers and global glacier recession: A review. Prog Phys Geogr-Earth Environ, 30: 285–306

    Article  Google Scholar 

  • Bormann K J, Brown R D, Derksen C, Painter T H. 2018. Estimating snowcover trends from space. Nat Clim Change, 8: 924–928

    Article  Google Scholar 

  • Brun F, Berthier E, Wagnon P, Kääb A, Treichler D. 2017. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat Geosci, 10: 668–673

    Article  Google Scholar 

  • Ciracì E, Velicogna I, Swenson S. 2020. Continuity of the mass loss of the world’s glaciers and ice caps from the GRACE and GRACE follow-on missions. Geophys Res Lett, 47: e86926

    Article  Google Scholar 

  • Cogley J. 2012. The future of the world’s glaciers. In: HendersonSellers A, McGuffie K, eds. The Future of the World’s Climate. Waltham: Elsevier. 197–222

    Chapter  Google Scholar 

  • Cogley J G, Hock R, Rasmussen L A, Arendt A A, Bauder A, Braithwaite R J, Jansson P, Kaser G, Möller M, Nicholson L, Zemp M. 2011. Glossary of glacier mass balance and related terms. Research Report. Paris: UNESCO/IHP

    Google Scholar 

  • Farinotti D, Huss M, Fürst J J, Landmann J, Machguth H, Maussion F, Pandit A. 2019. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat Geosci, 12: 168–173

    Article  Google Scholar 

  • Forsythe N, Fowler H J, Li X F, Blenkinsop S, Pritchard D. 2017. Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat Clim Change, 7: 664–670

    Article  Google Scholar 

  • Fuller W A. 1987. Measurement Error Models, 305. Hoboken: John Wiley & Sons

    Book  Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y. 2012. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat Geosci, 5: 322–325

    Article  Google Scholar 

  • Gardner A S, Moholdt G, Cogley J G, Wouters B, Arendt A A, Wahr J, Berthier E, Hock R, Pfeffer W T, Kaser G, Ligtenberg S R M, Bolch T, Sharp M J, Hagen J O, van den Broeke M R, Paul F. 2013. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340: 852–857

    Article  Google Scholar 

  • Gardner A S, Moholdt G, Wouters B, Wolken G J, Burgess D O, Sharp M J, Cogley J G, Braun C, Labine C. 2011. Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature, 473: 357–360

    Article  Google Scholar 

  • Gardner A, Moholdt G, Arendt A, Wouters B. 2012. Accelerated contributions of Canada’s Baffin and Bylot Island glaciers to sea level rise over the past half century. Cryosphere, 6: 1103–1125

    Article  Google Scholar 

  • Group W G S L B. 2018. Global sea-level budget 1993-present. Earth Syst Sci Data, 10: 1551–1590

    Article  Google Scholar 

  • Guo D, Sun J, Yang K, Pepin N, Xu Y, Xu Z, Wang H. 2020. Satellite data reveal southwestern Tibetan plateau cooling since 2001 due to snowalbedo feedback. Int J Climatol, 40: 1644–1655

    Article  Google Scholar 

  • Haeberli W, Whiteman C. 2015. Snow and Ice-Related Hazards, Risks, and Disasters: A General Framework, Snow and Ice-Related Hazards, Risks and Disasters. Amsterdam: Elsevier. 1–34

    Book  Google Scholar 

  • Harig C, Simons F J. 2016. Ice mass loss in Greenland, the Gulf of Alaska, and the Canadian Archipelago: Seasonal cycles and decadal trends. Geophys Res Lett, 43: 3150–3159

    Article  Google Scholar 

  • Hartmann D, Tank A M G K, Rusticucci M, Alexander L, Brönnimann S, Charabi Y, Dentener F, Dlugokencky E, Easterling D, Kaplan A, Soden B, Thorne P, Wild M, Zhai P M. 2013. Observations: Atmosphere and surface supplementary material. In: Stocker T F, Qin D, Plattner G, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P, eds. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

    Google Scholar 

  • Hock R, de Woul M, Radić V, Dyurgerov M. 2009. Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys Res Lett, 36: L07501

    Article  Google Scholar 

  • Hock R, Jansson P, Braun L N. 2005. Modelling the Response of Mountain Glacier Discharge to Climate Warming, Global Change and Mountain Regions. Heidelberg: Springer. 243–252

    Google Scholar 

  • Huss M, Hock R. 2018. Global-scale hydrological response to future glacier mass loss. Nat Clim Change, 8: 135–140

    Article  Google Scholar 

  • IPCC, 2019. Summary for policymakers. In: Pörtner H O, Roberts D C, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Nicolai M, Okem A, Petzold J, Rama B, Weyer N, eds. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate

  • Jacob T, Wahr J, Pfeffer W T, Swenson S. 2012. Recent contributions of glaciers and ice caps to sea level rise. Nature, 482: 514–518

    Article  Google Scholar 

  • Kääb A, Leinss S, Gilbert A, Bühler Y, Gascoin S, Evans S G, Bartelt P, Berthier E, Brun F, Chao W A, Farinotti D, Gimbert F, Guo W, Huggel C, Kargel J S, Leonard G J, Tian L, Treichler D, Yao T. 2018. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nat Geosci, 11: 114–120

    Article  Google Scholar 

  • Kaser G, Cogley J G, Dyurgerov M B, Meier M F, Ohmura A. 2006. Mass balance of glaciers and ice caps: Consensus estimates for 1961–2004. Geophys Res Lett, 33: L19501

    Article  Google Scholar 

  • Kaser G, Fountain A, Jansson P. 2003. A Manual for Monitoring the Mass Balance of Mountain Glaciers. Paris: UNESCO

    Google Scholar 

  • Kaser G, Grosshauser M, Marzeion B. 2010. Contribution potential of glaciers to water availability in different climate regimes. Proc Natl Acad Sci USA, 107: 20223–20227

    Article  Google Scholar 

  • Li Y J, Ding Y J, Shangguan D H, Wang R J. 2019. Regional differences in global glacier retreat from 1980 to 2015. Adv Clim Change Res, 10: 203–213

    Article  Google Scholar 

  • Mackintosh A N, Anderson B M, Lorrey A M, Renwick J A, Frei P, Dean S M. 2017. Regional cooling caused recent New Zealand glacier advances in a period of global warming. Nat Commun, 8: 14202

    Article  Google Scholar 

  • Marzeion B, Champollion N, Haeberli W, Langley K, Leclercq P, Paul F. 2017. Observation-based estimates of global glacier mass change and its contribution to sea-level change. Surv Geophys, 38: 105–130

    Article  Google Scholar 

  • Marzeion B, Kaser G, Maussion F, Champollion N. 2018. Limited influence of climate change mitigation on short-term glacier mass loss. Nat Clim Change, 8: 305–308

    Article  Google Scholar 

  • Marzeion B, Leclercq P W, Cogley J G, Jarosch A H. 2015. Brief Communication: Global reconstructions of glacier mass change during the 20th century are consistent. Cryosphere, 9: 2399–2404

    Article  Google Scholar 

  • Maurer J M, Schaefer J M, Rupper S, Corley A. 2019. Acceleration of ice loss across the Himalayas over the past 40 years. Sci Adv, 5: eaav7266

    Article  Google Scholar 

  • Medwedeff W G, Roe G H. 2016. Trends and variability in the global dataset of glacier mass balance. Clim Dyn, 48: 3085–3097

    Article  Google Scholar 

  • Meier M F, Dyurgerov M B, Rick U K, O’Neel S, Pfeffer W T, Anderson R S, Anderson S P, Glazovsky A F. 2007. Glaciers dominate eustatic sealevel rise in the 21st century. Science, 317: 1064–1067

    Article  Google Scholar 

  • Menounos B, Hugonnet R, Shean D, Gardner A, Howat I, Berthier E, Pelto B, Tennant C, Shea J, Noh M J, Brun F, Dehecq A. 2019. Heterogeneous changes in western North American glaciers linked to decadal variability in zonal wind strength. Geophys Res Lett, 46: 200–209

    Article  Google Scholar 

  • Mernild S H, Lipscomb W H, Bahr D B, Radić V, Zemp M. 2013. Global glacier changes: A revised assessment of committed mass losses and sampling uncertainties. Cryosphere, 7: 1565–1577

    Article  Google Scholar 

  • Morice C P, Kennedy J J, Rayner N A, Jones P D. 2012. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J Geophys Res, 117: D08101

    Google Scholar 

  • Oliveira E C, Aguiar P F. 2013. Least squares regression with errors in both variables: Case studies. Quím Nova, 36: 885–889

    Article  Google Scholar 

  • Qin D, Ding Y, Xiao C, Kang S, Ren J, Yang J, Zhang S. 2018. Cryospheric Science: Research framework and disciplinary system. Natl Sci Rev, 5: 255–268

    Article  Google Scholar 

  • Radić V, Hock R. 2014. Glaciers in the earth’s hydrological cycle: Assessments of glacier mass and runoff changes on global and regional scales. Surv Geophys, 35: 813–837

    Article  Google Scholar 

  • RGI Consortium. 2017. Randolph Glacier Inventory, A Dataset of Global Glacier Outlines: Version 6.0. Technical Report

  • Rignot E, Velicogna I, van den Broeke M R, Monaghan A, Lenaerts J T M. 2011. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett, 38: L05503

    Article  Google Scholar 

  • Shangguan D, Ding Y, Liu S, Xie Z, Pieczonka T, Xu J, Moldobekov B. 2017. Quick release of internal water storage in a glacier leads to underestimation of the hazard potential of Glacial lake outburst floods from lake merzbacher in central Tian Shan Mountains. Geophys Res Lett, 44: 9786–9795

    Article  Google Scholar 

  • Imbie Team, 2018. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558: 219–222

    Article  Google Scholar 

  • Imbie Team. 2020. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature, 579: 233–239

    Article  Google Scholar 

  • Vargo L J, Anderson B M, Dadić R, Horgan H J, Mackintosh A N, King A D, Lorrey A M. 2020. Anthropogenic warming forces extreme annual glacier mass loss. Nat Clim Change, 10: 856–861

    Article  Google Scholar 

  • Vaughan D G, Comiso J, Allison I, Carrasco J, Kaser G, Kwok R, David H. 2013. Observations: Cryosphere. Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press. 317–382

    Google Scholar 

  • Velicogna I, Sutterley T C, van den Broeke M R. 2014. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys Res Lett, 41: 8130–8137

    Article  Google Scholar 

  • Vincent C, Fischer A, Mayer C, Bauder A, Galos S P, Funk M, Thibert E, Six D, Braun L, Huss M. 2017. Common climatic signal from glaciers in the European Alps over the last 50 years. Geophys Res Lett, 44: 1376–1383

    Article  Google Scholar 

  • Wouters B, Bamber J L, van den Broeke M R, Lenaerts J T M, Sasgen I. 2013. Limits in detecting acceleration of ice sheet mass loss due to climate variability. Nat Geosci, 6: 613–616

    Article  Google Scholar 

  • Wouters B, Gardner A S, Moholdt G. 2019. Global Glacier mass loss during the GRACE Satellite Mission (2002–2016). Front Earth Sci, 7: 1

    Article  Google Scholar 

  • Ye B, Ding Y, Liu F, Liu C. 2003. Responses of various-sized alpine glaciers and runoff to climatic change. J Glaciol, 49: 1–7

    Article  Google Scholar 

  • Zemp M, Frey H, Gärtner-Roer I, Nussbaumer S U, Hoelzle M, Paul F, Haeberli W, Denzinger F, Ahlstrøm A P, Anderson B, Bajracharya S, Baroni C, Braun L N, Cáceres B E, Casassa G, Cobos G, Dávila L R, Delgado Granados H, Demuth M N, Espizua L, Fischer A, Fujita K, Gadek B, Ghazanfar A, Ove Hagen J, Holmlund P, Karimi N, Li Z, Pelto M, Pitte P, Popovnin V V, Portocarrero C A, Prinz R, Sangewar C V, Severskiy I, Sigurđsson O, Soruco A, Usubaliev R, Vincent C. 2015. Historically unprecedented global glacier decline in the early 21st century. J Glaciol, 61: 745–762

    Article  Google Scholar 

  • Zemp M, Huss M, Thibert E, Eckert N, McNabb R, Huber J, Barandun M, Machguth H, Nussbaumer S U, Gärtner-Roer I, Thomson L, Paul F, Maussion F, Kutuzov S, Cogley J G. 2019. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568: 382–386

    Article  Google Scholar 

  • Zemp M, Nussbaumer S U, GärtnerRoer I, Huber J, Machguth H, Paul F, Hoelzle A M. 2017. Global Glacier Change Bulletin No. 2 (2014–2015)

  • Zheng W, Pritchard M E, Willis M J, Tepes P, Gourmelen N, Benham T J, Dowdeswell J A. 2018. Accelerating glacier mass loss on Franz Josef Land, Russian Arctic. Remote Sens Environ, 211: 357–375

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to WGMS (http://wgms.ch/) for their compiling and disseminating standardized mass balance observations through its scientific collaboration network, especially to Michael Zemp who gives us suggestions about how to collect the mass balance dataset. The in-situ mass balance data are available at http://wgms.ch/data_databaseversions/. Glaciers accumulation area ratio data are from the annual reports of WGMS (https://wgms.ch/ggcb/). We are grateful to China-Pakistan Joint Research Center on Earth Sciences that supported the implementation of this study. We thank the two anonymous reviewers, for their constructive comments that helped improve the manuscript. This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA19070501), the National Natural Science Foundation of China (Grant Nos. 41730751, 41671066, 41871059 & 41871055).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongjian Ding or Donghui Shangguan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ding, Y., Shangguan, D. et al. Climate-driven acceleration of glacier mass loss on global and regional scales during 1961–2016. Sci. China Earth Sci. 64, 589–599 (2021). https://doi.org/10.1007/s11430-020-9700-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9700-1

Keywords

Navigation