Skip to main content

Advertisement

Log in

Trends and variability in the global dataset of glacier mass balance

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Glacier mass balance (i.e., accumulation and ablation) is the most direct connection between climate and glaciers. We perform a comprehensive evaluation of the available global network of mass-balance measurements. Each mass-balance time series is decomposed into a trend and the variability about that trend. Observed variability ranges by an order of magnitude, depending on climate setting (i.e., maritime vs continental). For the great majority of glaciers, variability is well characterized by normally distributed, random fluctuations that are uncorrelated between seasons, or in subsequent years. The magnitude of variability for both summer and winter is well correlated with mean wintertime balance, which reflects the climatic setting. Collectively, summertime variability exceeds wintertime variability, except for maritime glaciers. Trends in annual mass balance are generally negative, driven primarily by summertime changes. Approximately 25 % of annual-mean records show statistically significant negative trends when judged in isolation. In aggregate, the global trend is negative and significant. We further evaluate the magnitude of trends relative to the variability. We find that, on average, trends are approximately −0.2 standard deviations per decade, although there is a broad spread among individual glaciers. Finally, for two long records we also compare mass-balance trends and variability with nearby meteorological stations. We find significant differences among stations meaning caution is warranted in interpreting any point measurement (such as mass balance) as representative of region-wide behavior. By placing observed trends in the context of natural variability, the results are useful for interpreting past glacial history, and for placing constraints on future predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ault TR, Cole JE, Pederson GT, Overpeck JT, St George S, Otto-Bliesner B, Deser C, Woodhouse C (2013) The continuum of hydroclimate variability in western North America during the last millennium. J Clim 26:5863–5878. doi:10.1175/JCLI-D-11-00732.1

    Article  Google Scholar 

  • Bamber JL, Rivera A (2007) A review of remote sensing methods for glacier mass balance determination. Glob Planet Change 59:138–148. doi:10.1016/j.gloplacha.2006.11.031

    Article  Google Scholar 

  • Bartlett MS (1946) On the theoretical specification and sampling properties of autocorrelated time-series. Suppl J R Stat Soc 8:27–41

    Article  Google Scholar 

  • Box G, Jenkins G, Reinsel G (2008) Time series analysis: forecasting and control, 4th edn. Wiley, Hoboken, p 784

    Book  Google Scholar 

  • Braithwaite RJ (2002) Glacier mass balance: the first 50 years of international monitoring. Prog Phys Geogr 26:76–95

    Article  Google Scholar 

  • Braithwaite RJ (2009) After six decades of monitoring glacier mass balance we still need data but it should be richer data. J Glaciol 50:191–197

    Article  Google Scholar 

  • Braithwaite RJ, Zhang Y (1999) Relationships between interannual variability of glacier mass balance and climate. J Glaciol 45:456–462

    Article  Google Scholar 

  • Burke EE, Roe GH (2014) The persistence of memory in the climatic forcing of glaciers. Clim Dyn. doi:10.1007/s00382-013-1758-0

    Google Scholar 

  • Casola JH, Cuo L, Livneh B, Lettenmaier DP, Stoelinga MT, Mote PW, Wallace JM (2009) Assessing the impacts of global warming on snowpack in the Washington Cascades. J Clim 22:2758–2772

    Article  Google Scholar 

  • Cogley JG (2009) Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann Glaciol 50:96–100

    Article  Google Scholar 

  • Cogley J, Hock R, Rasmussen L, Arendt A, Bauder A, Braithwaite R, Jansson P, Kaser G, Möller M, Nicholson L, and Zemp M (2011) Glossary of glacier mass balance and related terms, Tech. rep., IHP-VII Technical Documents in Hydrology, IACS Contribution, No. 2, UNESCO-IHP, Paris

  • Cuffey KM, Paterson WSB (2010) The physics of glaciers. Elsevier, Amsterdam, p 707

    Google Scholar 

  • Deser C, Phillips AS, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546

    Article  Google Scholar 

  • Dyurgerov M, Meier MF (2005) Glaciers and the Changing Earth System: A 2004 Snapshot. Occasional Paper 58, Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, p 118

  • Elsberg DH, Harrison WD, Echelmeyer KA, Krimmel RM (2001) Quantifying the effects of climate and surface change on glacier mass balance. J Glaciol 47:649–658

    Article  Google Scholar 

  • Fraedrich K, Blender R (2003) Scaling of atmosphere and ocean temperature correlations in observations and climate models. Phys Rev Lett 90:108501. doi:10.1103/PhysRevLett.90.108501

    Article  Google Scholar 

  • Fraedrich K, Luksch U, Blender R (2004) A 1/f-model for long time memory of the ocean surface temperature. Phys Rev E. doi:10.1103/PhysRevE.70.037301

    Google Scholar 

  • Gardner AS, Moholdt G, Cogley JG, Wouters B, Arendt AA, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SRM, Bolch T, Sharp MJ, Hagen JO, van den Broeke MR, Paul F (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340:852–857

    Article  Google Scholar 

  • Greene AM (2005) A time constant for hemispheric glacier mass balance. J Glaciol 51:353–362. doi:10.3189/172756505781829278

    Article  Google Scholar 

  • Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: Atmosphere and Surface. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107. doi:10.1175/2009BAMS2607

    Article  Google Scholar 

  • Hoffert MI, Callegari AJ, Hsieh CT (1980) The role of deep sea heat storage in the secular response to climatic forcing. J Geophys Res: Oceans 85(C11):6667–6679

    Article  Google Scholar 

  • Huss M, Hock R, Bauder A, Funk M et al (2010) Reply to the comment of Leclercq et al. on 100-year mass changes in the Swiss Alps linked to the Atlantic Multi-decadal Oscillation. Cryosphere Discuss 4:2587–2592. doi:10.5194/tcd-4-2587-2592

    Article  Google Scholar 

  • Huybers P, Curry W (2006) Links between annual, Milankovitch, and continuum temperature variability. Nature 41:329–332

    Article  Google Scholar 

  • Huybers KM, Roe GH (2009) Glacier response to regional patterns of climate variability. J Clim 22:4606–4620

    Article  Google Scholar 

  • IPCC (2013) Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Jóhannesson T, Raymond CF, Waddington ED (1989) Timescale for adjustments of glaciers to changes in mass balance. J Glaciol 35:355–369

    Article  Google Scholar 

  • Kaser G, Fountain A, Jansson P (2003) A Manual For Monitoring the Mass Balance of Mountain Glaciers. IHP-VI Technical Documents in Hydrology No. 59, UNESCO-IHP, Paris

  • Laepple T, Huybers P (2014) Ocean surface temperature variability: large model-data differences at decadal and longer periods. Proc Nat Acad Sci 111:16,682–16687

    Article  Google Scholar 

  • Leclercq PW, van de Wal RSW, Oerlemans J et al (2010) Comment on “100-year mass changes in the Swiss Alps linked to the Atlantic Multidecadal Oscillation” by Matthias Huss et al. (2010). Cryosphere Discuss 4:2475–2481. doi:10.5194/tcd-4-2475-2010

    Article  Google Scholar 

  • Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: Changes in Snow, Ice and Frozen Ground. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Lettenmaier DP (1976) Detection of trends in water quality data from records with dependent observations. Water Resour Res 12:1037–1046

    Article  Google Scholar 

  • MacMynowski DG, Shin H-J, Caldeira K (2011) The frequency response of temperature and precipitation in a climate model. Geophys Res Lett 38:L16711

    Article  Google Scholar 

  • Marzeion B, Jarosch AH, Hofer M (2012) Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 6:1295–1322

    Article  Google Scholar 

  • Oerlemans J (2001) Glaciers and climate change. Lisse, etc., A. A. Balkema

  • O’Neal MA, Roth LB, Hanson B, Leathers DJ (2010) A field-based model of the effects of landcover changes on daytime summer temperatures in the north cascades. Phys Geogr 31:137–155. doi:10.2747/0272-3646.31.2.137

    Article  Google Scholar 

  • Pelletier JD (1997) Analysis and modeling of the natural variability of climate. J Clim 10:1331–1342

    Article  Google Scholar 

  • Pelletier JD (1998) The power-spectral density of atmospheric temperature from time scales of 102 to 106 years. Earth Planet Sci Lett 158:157–164

    Article  Google Scholar 

  • Percival DB, Overland JE, Mofjeld HO (2001) Interpretation of north Pacific variability as a short- and long-memory process. J Clim 14:4545–4559

    Article  Google Scholar 

  • Pfeffer WT, Arendt AA, Bliss A, Bolch T, Cogley JG, Gardner AS, Hagen J-O, Hock R, Kaser G, Kienholz C, Miles ES, Moholdt G, Mölg N, Paul F, Radić V, Rastner P, Raup BH, Rich J, Sharp MJ (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J Glaciol 60:537–552

    Article  Google Scholar 

  • Roe GH (2011) What do glaciers tell us about climate variability and climate change? J Glaciol 57:567–578

    Article  Google Scholar 

  • Roe GH, Baker MB (2014) Glacier response to climate perturbations: an accurate linear geometric model. J Glaciol 60:670–684

    Article  Google Scholar 

  • Roe GH, Baker MB (2016) The response of glaciers to climatic persistence. J Glaciol. doi:10.1017/jog.2016.4

    Google Scholar 

  • Roe GH, O’Neal MA (2009) The response of glaciers to intrinsic climate variability: observations and models of late-Holocene variations in the Pacific Northwest. J Glaciol 55:839–854

    Article  Google Scholar 

  • Steinskog DJ, Tjøstheim DB, Kvamstø NG (2007) A cautionary note on the use of the Kolmogorov–Smirnov test for normality. Mon Weather Rev 135:1151–1157

    Article  Google Scholar 

  • Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Kwok R, Mote P, Murray T, Paul F, Ren J, Rignot E, Solomina O, Steffen K, Zhang T (2013) Observations: Cryosphere. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge, p 484

    Book  Google Scholar 

  • WGMS (2013) Glacier Mass Balance Bulletin No. 12 (2010–2011). In: Zemp M, Nussbaumer SU, Naegeli K, Gärtner-Roer I, Paul F, Hoelzle M, Haeberli W (eds), ICSU

  • WGMS (2014) Fluctuations of Glaciers Database. World Glacier Monitoring Service, Zurich, Switzerland. doi:10.5904/wgms-fog-2014-09

  • Zemp M, Frey H, Gärtner-Roer I, Nussbaumer SU, Hoelzle M, Paul F, Haeberli W, Denzinger F, Ahlstrøm AP, Anderson B, Bajracharya S, Baroni C, Braun LN, Cáceres BE, Casassa G, Cobos G, Dávila LR, Delgado Granados H, Demuth MN, Espizua L, Fischer A, Fujita K, Gadek B, Ghazanfar A, Hagen JO, Holmlund P, Karimi N, Li Z, Pelto M, Pitte P, Popovnin VV, Portocarrero CA, Prinz R, Sangewar CV, Severskiy I, Sigursson O, Soruco A, Usubaliev R, Vincent C (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61:745–762. doi:10.3189/2015JoG15J017

    Article  Google Scholar 

  • Zemp M, Thibert E, Huss M, Stumm D, Rolstad Denby C, Nuth C, Nussbaumer SU, Moholdt G, Mercer A, Mayer C, Joerg PC, Jansson P, Hynek B, Fischer A, Escher-Vetter H, Elvehøy H, Andreassen LM (2013) Reanalyzing glacier mass balance measurement series. The Cryosphere 7:1227–1245

    Article  Google Scholar 

  • Zhu X, Fraedrich K, Liu Z, Blender R (2010) A demonstration of long-term memory and climate predictability. J Clim 23:5021–5029

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Kurt Cuffey and one anonymous reviewer for constructive and useful guidance, and to Ed Schneider, the editor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William G. Medwedeff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medwedeff, W.G., Roe, G.H. Trends and variability in the global dataset of glacier mass balance. Clim Dyn 48, 3085–3097 (2017). https://doi.org/10.1007/s00382-016-3253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3253-x

Keywords

Navigation