Skip to main content

Advertisement

Log in

A story of Devonian ocean plate stratigraphy hosted by the Ulaanbaatar accretionary complex, northern Mongolia: implications from geological, structural and U–Pb detrital zircon data

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Accretionary complexes and their hosted Ocean Plate Stratigraphy (OPS) units record a full story of ancient oceans from their birth at mid-oceanic ridges to their death at subduction zones. However, their reconstruction is difficult because accretionary complexes possess very complicated structures and therefore require careful and detailed in-field geological and structural studies and up-to-date analytical data. In this paper, we present results of detailed geological and structural studies of OPS sediments and new U–Pb detrital zircon data from sandstones of the Gorki Formation, a major part of the Ulaanbaatar accretionary prism/complex. The structure of the Gorki Fm. consists of five units separated from each other by parallel NE-striking regional faults and deformed by intra-formational detachments. It formed by offscraping and accretion of OPS sediments and subsequent thrusting and duplexing. Each unit is characterized by a specific association of OPS rocks, type and degree of deformation, style of folding and bedding geometry suggesting dychronous deposition and accretion of marine sediments. The ages and lithologies of the five units of the Gorki Fm. allowed us to trace the whole story of OPS sedimentation and further deformation—from oceanic floor (pre-accretion), to young and growing accretionary prism (syn-accretion) to accretionary prism stabilization (post-accretion). The dominantly southward vergence of the Gorki OPS thrust sheets suggests a generally northward subduction polarity. The greywacke sandstones of Unit I yielded U–Pb zircon ages ranging from 389 to 317 Ma with two main peaks at 346 and 367 Ma suggesting a provenance dominated by Famennian to Visean igneous complexes. The absence of the Famennian peak in the U–Pb detrital zircon spectra of sandstones from younger Unit II suggests tectonic erosion of a late Devonian arc. In general, the repeated layer-parallel thrusts inside lithologically uniform sediment beds indicate a regime of strong compression along the Benioff plane during subduction at a Pacific-type convergent plate boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

modified from Kimura and Hori 1993; Saito and Goldberg 1997): 1—pre-accretion deformation (simple consolidation) during “quiet” ocean floor sedimentation after the birth of the oceanic crust at mid-oceanic ridge and deformation-free diagenesis; 2—syn-accretion deformation (tectonic volume loss), main stage of accretion: folding and thrusting of slices of younger OPS under the earlier accreted slices of older OPS, formation of duplexes, beginning of chert recrystallization; 3—post-accretion deformation (thrust fault loading)—maximal thickness of accretionary prism, growing sediment load and maximal chert recrystallization

Similar content being viewed by others

References

  • Aoki K, Seo Y, Sakata S, Obayashi H, Tsuchiya Y, Imayama T, Yamamoto S, Hirata T (2019) U-Pb zircon dating of the Sanbagawa metamorphic rocks in the Besshi–Asemi-gawa region, central Shikoku, Japan, and tectono-stratigraphic consequences. J Geol Soc Jpn 125(2):183–194

    Article  Google Scholar 

  • Badarch G, Cunningham WD, Windley BF (2002) A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. J Asian Earth Sci 21:87–110

    Article  Google Scholar 

  • Biske YS, Seltmann R (2010) Paleozoic Tian-Shan as a transitional region between the Rheic. Gondwana Res 17(2):602–613

    Article  Google Scholar 

  • Booth‐Rea, G., Klaeschen, D., Grevemeyer, I., Reston, T., 2008. Heterogeneous deformation in the Cascadia convergent margin and its relation to thermal gradient (Washington, NW USA). Tectonics 27, TC4005.

  • Boyer S, Elliott D (1982) Thrust systems. Am Asso Petrol Geol Bull 66:1196–1230

    Google Scholar 

  • Brueckner HK, Snyder WS (1985) Chemical and Sr-isotopic variations during diagenesis of Miocene siliceous sediments of the Monterey Formation, California. J Sediment Petrol 55:553–568

    Google Scholar 

  • Brueckner HK, Snyder WS, Boudreau M (1987) Diagenetic controls on the structural evolution of siliceous sediments in the Golconda Allochthon, Nevada, USA. J Struct Geol 9:403–417

    Article  Google Scholar 

  • Buslov MM, Safonova IYu, Watanabe T, Obut O, Fujiwara Y, Iwata K, Semakov NN, Sugai Y, Smirnova LV, Kazansky AYu (2001) Evolution of the Paleo-Asian Ocean (Altai-410 Sayan region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geosci J 5:203–224

    Article  Google Scholar 

  • Bussien D, Gombojav N, Winkler W, von Quadt A (2011) The Mongol–Okhotsk Belt in Mongolia—an appraisal of the geodynamic development by the study of sandstone provenance and detrital zircons. Tectonophysics 510:132–150

    Article  Google Scholar 

  • Chen Y, Xiao W, Windley BF, Zhang J, Zhou K, Sang M (2016) Structures and detrital zircon ages of the Devonian–Permian Tarbagatay accretionary complex in west Junggar, China: imbricated ocean plate stratigraphy and implications for amalgamation of the CAOB. Int Geol Rev 59(9):1097–1115

    Article  Google Scholar 

  • Cleven N, Lin S, Guilmette C, Xiao W, Davis B (2015) Petrogenesis and implications for tectonic setting of Cambrian suprasubduction-zone ophiolitic rocks in the central Beishan orogenic collage, Northwest China. J Asian Earth Sci 113:369–390

    Article  Google Scholar 

  • Clift P, Vannucchi P (2004) Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev Geophys 42:1–31

    Article  Google Scholar 

  • Dagva-Ochir L, Oyunchimeg T-U, Enkhdalai B, Safonova I, Li H, Otgonbaatar D, Tamehe LS, Sharav D (2020) Middle Paleozoic intermediate-mafic rocks of the Tsoroidog Uul’ accretionary complex, Central Mongolia: Petrogenesis and tectonic implications. Lithos 376–377, 105795.

  • Degtyarev KE, Ryazantsev AV (2007) Cambrian arc-continent collision in the Paleozoides of Kazakhstan. Geotectonics 41:63–86

    Article  Google Scholar 

  • Dickinson WR, Beard LS, Brakenridge GR, Erjavec JL, Ferguson RC, Inman KF, Knepp RA, Lindberg FA, Ryberg PT (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol Soc Am Bull 94:222–235

    Article  Google Scholar 

  • Dobretsov NL, Berzin NA, Buslov MM (1995) Opening and tectonic evolution of the Paleo-Asian Ocean. Int Geol Rev 37:335–360

    Article  Google Scholar 

  • Dorjsuren B, Bujinlkham B, Minjin Ch, Tsukada K (2006) Geological settings of the Ulaanbaatar terrane the Hangay–Hentey zone of the Devonian accretionary complex, central Asian orogenic belt. International Geoscience Program, IGCP-480, 39–42.

  • Emmanuel SMG, David TS, Dan B (2019) Outer trench slope flexure and faulting at Pacific basin subduction zones. Geophys J Int 218(1):708–728

    Article  Google Scholar 

  • Garcia ESM, Sandwell DT, Bassett D (2019) Outer trench slope flexure and faulting at Pacific basin subduction zones. Geophys J Int 218:708–728

    Article  Google Scholar 

  • Gordienko IV (2006) Geodynamic evolution of late baikalides and paleozoids in the folded periphery of the Siberian craton. Geologiya i Geofizika (russian Geology and Geophysics) 47(1):51–67

    Google Scholar 

  • Gordienko I, Medvedev AY, Gornova MA, Tomurtogoo O, Goneger TA (2012) The Haraa Gol terrane in the western Hentiyn Mountains (northern Mongolia): Geochemistry, geochronology, and geodynamics. Russ Geol Geophys 53:281–292

    Article  Google Scholar 

  • Gordienko, I.V., 1987. Paleozoic Magmatism and Geodynamics of the Central Asian Fold Belt. Nauka, Moscow, 238 p. (in Russian)

  • Gulick SPS, Bangs NLB, Shipley TH, Nakamura Y, Moore G, Kuramoto S (2004) Three-dimensional architecture of the Nankai accretionary prism’s imbricate thrust zone off Cape Muroto, Japan: Prism reconstruction via en echelon thrust propagation. J Geophys Res 109:B02105

    Google Scholar 

  • Gusev GS, Peskov AI (1996) Geochemistry and conditions of formation of ophiolites of Eastern Transbaikalia. Geochemistry 8:723–737

    Google Scholar 

  • Hannes KB, Walter SS, Marion B (1987) Diagenetic controls on the structural evolution of siliceous sediments in the golconda allochthon, Nevada, U.S.A. Journal of Structural Geology 9(4), 403–417.

  • Hara H, Kurihara T, Tsukada K, Kon Y, Uchino T, Suzuki T, Takeuchi M, Nuramkhaan M, Chuluun M (2013) Provenance and origins of Late Paleozoic accretionary complex within the Khangai–Khentei belt in the Central Asian Orogenic Belt, central Mongolia. J Asian Earth Sci 75:141–157

    Article  Google Scholar 

  • He ZY, Klemd R, Yan LL, Lu T-Y, Zhang Z-M (2018) Mesoproterozoic juvenile crust in microcontinents of the Central Asian Orogenic Belt: evidence from oxygen and hafnium isotopes in zircon. Sci Rep 8:5054

    Article  Google Scholar 

  • Hori R (1992) Radiolarian biostratigraphy at the Triassic/Jurassic period Boundary in bedded cherts from the Inuyama Area, Central Japan. J Geosci 35:53–65

    Google Scholar 

  • Isozaki Y, Maruyama S, Fukuoka F (1990) Accreted oceanic materials in Japan. Tectonophysics 181:179–205

    Article  Google Scholar 

  • Isozaki Y, Aoki K, Nakama T, Yanai S (2010) New Insight into a subduction-related orogeny: Re-appraisal on geotectonic framework and evolution of the Japanese Islands. Gondwana Res 18:82–105

    Article  Google Scholar 

  • Jahn B, Wu F, Chen B (2000) Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Trans R Soc Edinburgh 91:181–193

    Google Scholar 

  • Jahn B-M (2004) The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In: Malpas, J., Fletcher, C.J.N., Ali, J.R., Aitchison, J.C. (Eds.), Aspects of the tectonic evolution of China. Geological Society, London, Special Publication 226, 73–100.

  • Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429

    Article  Google Scholar 

  • Karig DE (1984) Deformation in the forearc: implications for mountain belts. In: Mountain Building Processes, Academic Press, 59–71.

  • Kashiwagi K, Tsukada K, Minjin C (2004) Paleozoic spherical radiolarians from the Gorkhi Formation, southwest Khentei range, central Mongolia; a preliminary report. Mongolian Geoscientist 24:17–26

    Google Scholar 

  • Kelty TK, Yin A, Dash B, Gehrels GE, Ribeiro AE (2008) Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay–Hentey basin, north-central Mongolia: implications for the tectonic evolution of the Mongol–Okhotsk Ocean in central Asia. Tectonophysics 451:290–311

    Article  Google Scholar 

  • Kemkin IV, Khanchuk AI, Kemkina RA (2016) Accretionary prisms of the Sikhote-Alin Orogenic Belt: Composition, structure and significance for reconstruction of the geodynamic evolution of the eastern Asian margin. J Geodyn 102:202–230

    Article  Google Scholar 

  • Kimura K, Hori R (1993) Offscraping accretion of Jurassic chert-clastic complexes in the Mino-Tamba belt, central Japan. J Struct Geol 15:145–161

    Article  Google Scholar 

  • Kovalenko VI, Yarmolyuk VV, Kovach VP, Kotov AB, Kozakov IK, Salnikova EB, Larin AM (2004) Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: geological and isotopic evidence. J Asian Earth Sci 5:605–627

    Article  Google Scholar 

  • Kuramoto S, Taira A, Bangs NL, Shipley TH, Moore GF (2000) Seismogenic zone in the Nankai accretionary wedge general summary of Japan-U.S. collaborative 3-D seismic investigation. J Geogr 109:531–539

    Article  Google Scholar 

  • Kurihara T, Tsukada K, Otoh S, Kashiwagi K, Minjin C, Dorjsuren B, Bujinlkham B, Sersmaa G, Manchuk N, Niwa M, Tokiwa T, Hikichi G, Kozuka T (2009) Upper Silurian and Devonian pelagic deep-water radiolarian chert from the Khangai–Khentei belt of Central Mongolia: evidence for Middle Paleozoic subduction–accretion activity in the Central Asian Orogenic Belt. J Asian Earth Sci 34:209–225

    Article  Google Scholar 

  • Kusky T, Windley B, Safonova I, Wakita K, Wakabayashi J, Polat A, Santosh M (2013) Recognition of Ocean Plate stratigraphy in accretionary orogens through earth history: a record of 3.8 billion years of sea floor spreading, subduction, and accretion. Gondwana Res 24:501–547

    Article  Google Scholar 

  • Ludwig KR (2003) User’s manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley, CA, Berkeley Geochronology Center, Special Publication No. 4.

  • Maruyama S (1997) Pacific-type orogeny revisited: Miyashiro-type orogeny proposed. Island Arc 6(1):91–120

    Article  Google Scholar 

  • Maruyama S, Safonova I (2019) Orogeny and mantle dynamics: role of tectonic erosion and second continent in the mantle transition zone. Novosibirsk State University, Novosibirsk, IPC NSU, p 208

    Google Scholar 

  • Maruyama S, Kawai T, Windley BF (2010) Ocean plate stratigraphy and its imbrication in an accretionary orogen: the Mona complex, Anglesey-Lleyn, Wales, UK. Geol Soc Lond Spec Publ 338:55–75

    Article  Google Scholar 

  • Maruyama S, Omori S, Sensu H, Kawai K, Windley BF (2011) Pacific-type orogens: new concepts and variations in space and time from present to past. J Geogr 120:115–223

    Article  Google Scholar 

  • Matsuda T, Isozaki Y (1991) Well-documented travel history of Mesozoic pelagic chert in Japan: from remote ocean to subduction zone. Tectonics 10:475–499

    Article  Google Scholar 

  • McClay K (1992) Glossary of thrust tectonics terms. Thrust tectonics. Chapman & Hall, London, pp 419–433

    Book  Google Scholar 

  • Miller EL, Kanter LR, Larue DK, Turner RJ (1982) Structural fabric of the Paleozoic Golconda allochthon, Antler Peak quadrangle, Nevada: progressive deformation of an oceanic sedimentary assemblage. J Geophys Res 87(B5):3795–3804

    Article  Google Scholar 

  • Minjin Ch, Tomurtogoo O, Dorjsuren B (2006) Devonian-Carboniferous accretionary complex of the Ulaanbaatar terrane. In: Tomurhuu, D., Netal’in, B.A., Ariunchimeg, Y., Khishigsuren, S., Erdenesaikhan, G. (Eds.), Structural and Tectonic Correletion across the Central Asia Orogenic Collage: Implications for Continental Growth and Intercontinental Deformation (Second International Workshop and Field Excursions for IGC Project 480), abstract and excursion guidebook, 100–106.

  • Miyashiro A, Aki K, Sengör AMC (1982) Orogeny. Wiley, Chichester, New York, p 254

    Google Scholar 

  • Nakane Y, Kurihara T, Nuramkhaan B, Nuramkhaan M, Takeuchi M, Tsukada K, Gonchigdorj S, Sodnom K (2012) Geological division of the rocks at southeast of Ulaanbaatar (Gachuurt-Nalaikh), central Mongolia. Bull Nagoya Univ Museum 28:19–26

    Google Scholar 

  • Otsuka T (1988) Paleozoic-Mesozoic sedimentary complex in the eastern Mino Terrane, central Japan, and its Jurassic tectonism. J Geosci Osaka City Univ 31:63–122

    Google Scholar 

  • Pettijohn FJ (1975) Sedimentary Rocks, 2nd edn. Harper and Row Publishers, New York, p 628p

    Google Scholar 

  • Ramberg B, Johnson AM (1976) Asymmetric folding in interbedded chert and shale of the Franciscan complex. San Francisco Bay Area California Tectonophysics 32:295–320

    Google Scholar 

  • Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373

    Article  Google Scholar 

  • Ranero CR, Villaseñor A, Phipps Morgan J, Weinrebe W (2005) Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochem Geophys Geosyst 6:Q12002

    Article  Google Scholar 

  • Ruppen D, Knaf A, Bussien D, Winkler W, Chimedtseren A, von Quadt A (2014) Restoring the Silurian to Carboniferous northern active continental margin of the Mongol–Okhotsk Ocean in Mongolia: Hangay–Hentey accretionary wedge and sea-mount collision. Gondwana Res 25:1517–1534

    Article  Google Scholar 

  • Safonova I (2017) Juvenile versus recycled crust in the Central Asian Orogenic Belt: Implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs. Gondwana Res 47:6–27

    Article  Google Scholar 

  • Safonova IY, Khanchuk AI (2021) Subduction erosion at Pacific-type convergent margins. Russian J Pac Geol 15:495–509

    Article  Google Scholar 

  • Safonova I, Santosh M (2014) Accretionary complexes in the Asia-Pacific region: tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Res 25:126–158

    Article  Google Scholar 

  • Safonova IYu, Utsunomiya A, Kojima S, Nakae S, Tomurtogoo O, Filippov AN, Koizumi K (2009) Pacific superplume-related oceanic basalts hosted by accretionary complexes of Central Asia, Russian Far East and Japan. Gondwana Res 16:587–608

    Article  Google Scholar 

  • Safonova I, Seltmann R, Kröner A, Gladkochub D, Schulmann K, Xiao W, Sun M (2011a) A new concept of continental construction in the Central Asian Orogenic Belt. Episodes 34(3):186–196

    Article  Google Scholar 

  • Safonova IYu, Sennikov NV, Komiya T, Bychkova YV, Kurganskaya EV (2011b) Geochemical diversity in oceanic basalts hosted by the Zasur’ya accretionary complex, NW Russian Altai, Central Asia: Implications from trace elements and Nd isotopes. J Asian Earth Sci 42:191–207

    Article  Google Scholar 

  • Safonova I, Biske G, Romer RL, Seltmann R, Simonov V, Maruyama S (2016a) Middle Paleozoic mafic magmatism and ocean plate stratigraphy of the South Tianshan, Kyrgyzstan. Gondwana Res 30:236–256

    Article  Google Scholar 

  • Safonova I, Maruyama S, Kojima S, Komiya T, Krivonogov S, Koshida K (2016b) Recognizing OIB and MORB in accretionary complexes: a new approach based on ocean plate stratigraphy, petrology, and geochemistry. Gondwana Res 33:92–114

    Article  Google Scholar 

  • Safonova I, Savinskiy I, Perfilova A, Gurova A, Maruyama S, Tsujimori T (2020) The Itmurundy Pacific-type orogenic belt in northern Balkhash, central Kazakhstan: Revisited plus first U-Pb age, geochemical and Nd isotope data from igneous rocks. Gondwana Res 79:49–69

    Article  Google Scholar 

  • Safonova I, Perfilova A, Obut O, Kotler P, Aoki S, Komiya T, Wang B, Sun M (2021) Traces of intra-oceanic arcs recorded in sandstones of eastern Kazakhstan: implications from U-Pb detrital zircon ages, geochemistry, and Nd–Hf isotopes. Int J Earth Sci. https://doi.org/10.1007/s00531-021-02059-z

    Article  Google Scholar 

  • Saito S, Goldberg D (1997) Evolution of tectonic compaction in the Barbados accretionary prism: estimates from logging-while-drilling. Earth Planet Sci Lett 148:423–432

    Article  Google Scholar 

  • Sang M, Xiao W, Orozbaev R, Bakirov A, Sakiev K, Pak N, Ivleva E, Zhou K, Ao S, Qiao Q, Zhang Z (2018) Structural styles and zircon ages of the South Tianshan accretionary complex, Atbashi Ridge, Kyrgyzstan: insights for the anatomy of ocean plate stratigraphy and accretionary processes. J Asian Earth Sci 153:9–41

    Article  Google Scholar 

  • Savinsky IA, Safonova IY, Perfilova AA, Stolyarov SS (2020) Geological structure and structural characteristics of the Gorki Formation Ulanbaatar accretionary complex of northern Mongolia. Materials of the XXXI conference for young researchers dedicated to the memory of Corresponding Member of the USSR Academy of Sciences K.O. Kratts. St Petersburg 202:247–248

    Google Scholar 

  • Scholl DW, von Huene R (2007) Crustal recycling at modern subduction zones applied to the past—Issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction. Geol Soc Am Mem 200:9–32

    Google Scholar 

  • Sengör AMC, Natal’in, B.A., (1996) Palaeotectonics of Asia: fragments of a synthesis. In: Yin A, Harrison M (eds) Tectonic evolution of Asia. Cambridge University Press, Cambridge, pp 486–640

    Google Scholar 

  • Shutov VD (1967) Classification of sandstones. Litologiya I Poleznyie Iskopaemyie 5:86–102 ((in Russian))

    Google Scholar 

  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249(1–2):1–35

    Article  Google Scholar 

  • Snyder WS, Brueckner HK, Schweickert RA (1983) Deformational styles in the Monterey Formation and other siliceous sedimentary rocks. In: Isaacs CM, Garrison RE (eds) Petroleum generation and occurrence in the Miocene Monterey Formation, California: Los Angeles. Society of Economic Paleontologists and Mineralogists, Pacific Section, pp 151–170

    Google Scholar 

  • Speed R (1990) Volume loss and defluidization history of Barbados. J Geophys Res 95:8983–8996

    Article  Google Scholar 

  • Stern C (2011) Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res 20:284–308

    Article  Google Scholar 

  • Stern, R., 2010. The anatomy and ontogeny of modern intra-oceanic arc systems. In: Kusky, T.M., Zhai, M.-G., Xiao, W. (Eds.), The Evolving Continents: Understanding Processes of Continental Growth. Geological Society of London Special Publications 338, 7–34.

  • Strasser M, Moore GF, Kimura G, Kitamura Y, Kopf AJ, Lallemant S, Park J-O, Screaton EJ, Su X, Underwood MB, Zhao X (2009) Origin and evolution of a splay fault in the Nankai accretionary wedge. Nat Geosci 2:648–652

    Article  Google Scholar 

  • Suppe J (1983) Geometry and kinematics of fault-bend folding. Am J Sci 283:684–721

    Article  Google Scholar 

  • Suzuki T, Nakane Y, Nuramkhaan B, Takeuchi M, Tsukada K, Gonchigdorj S, Sodnom K, Nuramkhaan M (2012) Description of sandstones in the Ulaanbaatar area, Mongolia. Bulletin of the Nagoya University Museum 28:27-38

  • Suppe J, Medwedeff D (1990) Geometry and kinematics of fault-propagation folding. Eclogae Geologicae Helvetiae 83:409–454

  • Suzuki T, Nakane Y, Bakhat N, Takeuchi M, Tsukada K, Sersmaa G, Khishigsuren S, Manchuk N (2012) Description of sandstones in the Ulaanbaatar area. Mongolia Bull Nagoya Univ Museum 28:27–38

    Google Scholar 

  • Takeuchi M, Tsukada K, Suzuki T, Nakane Y, Sersmaa G, Manchuk N, Kondo T, Matsuzawa N, Bakhat N, Khishigsuren S, Onon G, Katsurada Y, Hashimoto M, Yamasaki S, Matsumoto A, Oyu-Erdene B, Bulgamtsemgel M, Kundyz S, Enkhchimeg L, Ganzoring R, Myagmarsuren G, Jamiyandagva O, Molomjamts M (2012) Stratigraphy and geological structure of the Paleozoic system around Ulaanbaatar, Mongolia. Bull Nagoya University Museum 28:1–18

    Google Scholar 

  • ten Brink U, Marshak S, Granja Bruña J-L (2009) Bivergent thrust wedges surrounding oceanic island arcs: Insight from observations and sandbox models of the northeastern Caribbean plate. Geology 121:1522–1534

    Google Scholar 

  • Tomurtogoo O, Windley BF, Kröner A, Badarch G, Liu DY (2005) Zircon age and occurrence of the Adaetsag ophiolite and Muron shear zone, Central Mongolia: constraints on the evolution of the Mongol–Okhotsk ocean, suture and orogen. J Geol Soc London 162(1):125–134

    Article  Google Scholar 

  • Tomurtogoo O, Byamba J, Badarch G, Minjin C, Orolmaa D, Khosbayar P (1998) Geological map of Mongolia. scale 1: 1 000 000. Mineral Resources Authority of Mongolia and Mongolian Academy of Sciences, Ulaanbaatar.

  • Tomutogoo O (2002) Tectonic map of Mongolia, scale 1:1 000 000 (with brief explanatory notes), Geological Information Center, Ulaanbaatar.

  • Tsukada K, Kurihara T, Niwa K, Otoh S, Hikichi G, Kashiwagi K, Kozuka T, Minjin Ch, Dorjsuren B, Sersmaa G, Bujinlkham B (2013) Geochemical feature of basalt from the Gorkhi Formation, Khangay–Khentey Belt, central Mongolia. Island Arc 22:227–241

    Article  Google Scholar 

  • Vanucchi P, Morgan JP, Balestrieri ML (2016) Subduction erosion, and the de-construction of continental crust: The Central America case and its global implications. Gondwana Res 40:184–198

    Article  Google Scholar 

  • Wahrhaftig C (1984) Structure of the Marin Headlands block, California: a progress report. In: Franciscan Geology of Northern California. (Eds.), Blake, M.C., Jr. Pacific Section Society of Economic Paleontologists and Mineralogists 43, 31–50.

  • Wakabayashi J (2017) Structural context and variation of ocean plate stratigraphy, Franciscan Complex, California: insight into mélange origins and subduction-accretion processes. Progress in Earth and Planetary Science 4 (18).

  • Wakita K (2000) Melanges of the Mino terrane. Memoir Geol Soc Jpn 55:145–163

    Google Scholar 

  • Wakita K (2012) Mappable features of mélanges derived from ocean plate stratigraphy in the Jurassic accretionary complexes of Mino and Chichibu terranes, Southwest Japan. Tectonophysics 568–569:74–85

    Article  Google Scholar 

  • Wakita K, Metcalfee I (2005) Ocean plate stratigraphy in East and Southeast Asia. J Asian Earth Sci 24:679–702

    Article  Google Scholar 

  • Wang K, Wada I, Ishikawa Y (2004) Stresses in the subducting slab beneath southwest Japan and relation with plate geometry, tectonic forces, slab dehydration, and damaging earthquakes. J Geophys Res 109:B08304

    Google Scholar 

  • Whitmeyer SJ, Dordevic M (2021) Creating virtual geologic mapping exercises in a changing world. Geosphere 17(1):226–243

    Article  Google Scholar 

  • Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley J, Whitehouse M, Zheng YF (2004) Further characterization of the 91500 zircon crystal. Geostand Geoanal Res 28(1):9–39

    Article  Google Scholar 

  • Wilson T (1966) Did the Atlantic close and then re-open? Nature 211:676–681

    Article  Google Scholar 

  • Wilson RW, Houseman GA, Buiter SJH, McCaffrey KJ, Doré AG (2019) Fifty years of the Wilson cycle concept in plate tectonics: an overview. Geol Soc Lond Spec Publ 470:1–17

    Article  Google Scholar 

  • Windley BF, Alexeiev D, Xiao W, Kröner A, Badarch G (2007) Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc London 164:31–47

    Article  Google Scholar 

  • Xiao WJ, Huang BC, Han CM, Sun S, Li JL (2010) A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Res 18:253–273

    Article  Google Scholar 

  • Yarmolyuk VV, Kovach VP, Kozakov IK, Kozlovsky AM, Kotov AB, Rytsk EY (2012) Mechanisms of continental crust formation in the Central Asian Foldbelt. Geotectonics 46:251–272

    Article  Google Scholar 

  • Zhou Z, Lin J, Behn MD, Olive JA (2015) Mechanism for normal faulting in the subducting plate at the Mariana Trench. Geophys Res Lett 42(11):4309–4317

    Article  Google Scholar 

  • Zonenshain, L.P., Kuzmin, M.I., Natapov, L.M., 1990. Geology of the USSR: A Plate-Tectonic Synthesis. American Geophysical Union, Geodynamic Series 21, 242 p.

Download references

Acknowledgements

The study was supported by the Russian Science Foundation (project # 20-77-10051, OPS geology and stratigraphy, U-Pb dating). Additional support came from state assignments of the Ministry of Science and Education of Russia (projects #FSUS-2020-0039 and #0330-2019-0003—field geology, tectonics; project # AAAA-A19-119072990020-6—review on the CAOB). Contribution to IGCP 662.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inna Safonova.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savinskiy, I., Safonova, I., Perfilova, A. et al. A story of Devonian ocean plate stratigraphy hosted by the Ulaanbaatar accretionary complex, northern Mongolia: implications from geological, structural and U–Pb detrital zircon data. Int J Earth Sci (Geol Rundsch) 111, 2469–2492 (2022). https://doi.org/10.1007/s00531-021-02150-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-021-02150-5

Keywords

Navigation