Skip to main content
Log in

An Introduction to Data Assimilation and Predictability in Geomagnetism

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Data assimilation in geomagnetism designates the set of inverse methods for geomagnetic data analysis which rely on an underlying prognostic numerical model of core dynamics. Within that framework, the time-dependency of the magnetohydrodynamic state of the core need no longer be parameterized: The model trajectory (and the secular variation it generates at the surface of the Earth) is controlled by the initial condition, and possibly some other static control parameters. The primary goal of geomagnetic data assimilation is then to combine in an optimal fashion the information contained in the database of geomagnetic observations and in the dynamical model, by adjusting the model trajectory in order to provide an adequate fit to the data.

The recent developments in that emerging field of research are motivated mostly by the increase in data quality and quantity during the last decade, owing to the ongoing era of magnetic observation of the Earth from space, and by the concurrent progress in the numerical description of core dynamics.

In this article we review briefly the current status of our knowledge of core dynamics, and elaborate on the reasons which motivate geomagnetic data assimilation studies, most notably (a) the prospect to propagate the current quality of data backward in time to construct dynamically consistent historical core field and flow models, (b) the possibility to improve the forecast of the secular variation, and (c) on a more fundamental level, the will to identify unambiguously the physical mechanisms governing the secular variation. We then present the fundamentals of data assimilation (in its sequential and variational forms) and summarize the observations at hand for data assimilation practice. We present next two approaches to geomagnetic data assimilation: The first relies on a three-dimensional model of the geodynamo, and the second on a quasi-geostrophic approximation. We also provide an estimate of the limit of the predictability of the geomagnetic secular variation based upon a suite of three-dimensional dynamo models. We finish by discussing possible directions for future research, in particular the assimilation of laboratory observations of liquid metal analogs of Earth’s core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.M. Alexandrescu, D. Gibert, J.L. Le MouëL, G. Hulot, G. Saracco, An estimate of average lower mantle conductivity by wavelet analysis of geomagnetic jerks. J. Geophys. Res. 104(B8), 17735–17745 (1999). doi:10.1029/1999JB900135

    Article  ADS  Google Scholar 

  • H. Amit, J. Aubert, G. Hulot, P. Olson, A simple model for mantle-driven flow at the top of Earth’s core. Earth Planets Space 60, 845–854 (2008)

    ADS  Google Scholar 

  • J. Aubert, H. Amit, G. Hulot, Detecting thermal boundary control in surface flows from numerical dynamos. Phys. Earth Planet. Inter. 160(2), 143–156 (2007). doi:10.1016/j.pepi.2006.11.003

    Article  ADS  Google Scholar 

  • J. Aubert, H. Amit, G. Hulot, P. Olson, Thermochemical flows couple the Earth’s inner core growth to mantle heterogeneity. Nature 454, 758–761 (2008). doi:10.1038/nature07109

    Article  ADS  Google Scholar 

  • G.E. Backus, Kinematics of geomagnetic secular variation in a perfectly conducting core. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 263(1141), 239–266 (1968)

    Article  ADS  Google Scholar 

  • G.E. Backus, Application of mantle filter theory to the magnetic jerk of 1969. Geophys. J. R. Astron. Soc. 74(3), 713–746 (1983)

    Google Scholar 

  • G. Backus, R. Parker, C. Constable, Foundations of Geomagnetism (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  • C.D. Beggan, K.A. Whaler, Forecasting change of the magnetic field using core surface flows and ensemble Kalman filtering. Geophys. Res. Lett. 36, L18303 (2009). doi:10.1029/2009GL039927

    Article  ADS  Google Scholar 

  • A. Bennett, Inverse Modeling of the Ocean and Atmosphere (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  • P. Bergthorsson, B. Döös, Numerical weather map analysis. Tellus 7(3), 329–340 (1955)

    Article  ADS  Google Scholar 

  • J. Bloxham, D. Gubbins, A. Jackson, Geomagnetic secular variation. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci., 415–502 (1989)

  • J. Bloxham, S. Zatman, M. Dumberry, The origin of geomagnetic jerks. Nature 420(6911), 65–68 (2002). doi:10.1038/nature01134

    Article  ADS  Google Scholar 

  • S.I. Braginsky, Torsional magnetohydrodynamic vibrations of the earth’s core and variations in day length. Geomagnet. Aeron. 10, 1–8 (1970)

    ADS  Google Scholar 

  • S.I. Braginsky, Short period geomagnetic variations. Geophys. Astrophys. Fluid Dyn. 30, 1–78 (1984)

    Article  MATH  ADS  Google Scholar 

  • P. Brasseur, Ocean data assimilation using sequential methods based on the Kalman filter, in Ocean Weather Forecasting: An Integrated View of Oceanography, ed. by E. Chassignet, J. Verron. (Springer, Berlin, 2006), pp. 271–316

    Chapter  Google Scholar 

  • M. Buehner, Inter-comparison of 4D-Var and EnKF systems for operational deterministic numerical weather prediction, in WWRP/THORPEX Workshop on 4D-VAR and Ensemble Kalman Filter Inter-comparisons, Buenos Aires, Argentina, 2008

  • B. Buffett, J. Mound, A. Jackson, Inversion of torsional oscillations for the structure and dynamics of Earth’s core. Geophys. J. Int. 177(3), 878–890 (2009). doi:10.1111/j.1365-246X.2009.04129.x

    Article  ADS  Google Scholar 

  • H.P. Bunge, C. Hagelberg, B. Travis, Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophys. J. Int. 152(2), 280–301 (2003). doi:10.1046/j.1365-246X.2003.01823.x

    Article  ADS  Google Scholar 

  • E. Canet, A. Fournier, D. Jault, Forward and adjoint quasi-geostrophic models of the geomagnetic secular variation. J. Geophys. Res. 114, B11101 (2009). doi:10.1029/2008JB006189

    Article  ADS  Google Scholar 

  • P. Cardin, P. Olson, Experiments on core dynamics, in Core Dynamics, ed. by P. Olson, G. Schubert. Treatise on Geophysics, vol. 8 (Elsevier, Amsterdam, 2007), pp. 319–343, Chap. 11

    Chapter  Google Scholar 

  • J.G. Charney, R. Fjortoft, J. Von Neumann, Numerical integration of the barotropic vorticity equation. Tellus 2(4), 237–254 (1950)

    Article  MathSciNet  ADS  Google Scholar 

  • E. Chassignet, J. Verron, Ocean Weather Forecasting: An Integrated View of Oceanography (Springer, Berlin, 2006)

    Book  Google Scholar 

  • U.R. Christensen, J. Aubert, Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 140, 97–114 (2006). doi:10.1111/j.1365-246X.2006.03009.x

    Article  ADS  Google Scholar 

  • U.R. Christensen, A. Tilgner, Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos. Nature 429(6988), 169–171 (2004). doi:10.1038/nature02508

    Article  ADS  Google Scholar 

  • U.R. Christensen, J. Wicht, Numerical dynamo simulations, in Core Dynamics, ed. by P. Olson, G. Schubert. Treatise on Geophysics, vol. 8 (Elsevier, Oxford, 2007), pp. 245–282, Chap. 8

    Chapter  Google Scholar 

  • U.R. Christensen, V. Holzwarth, A. Reiners, Energy flux determines magnetic field strength of planets and stars. Nature 457(7226), 167–169 (2009). doi:10.1038/nature07626

    Article  ADS  Google Scholar 

  • U.R. Christensen, J. Aubert, G. Hulot, Conditions for Earth-like geodynamo models. Earth Planet. Sci. Lett. (2010). doi:10.1016/j.epsl.2010.06.009

    Google Scholar 

  • A. Chulliat, N. Olsen, Observation of magnetic diffusion in the Earth’s core from Magsat, Oersted and CHAMP data. J. Geophys. Res. 115, B05105 (2010). doi:10.1029/2009JB006994

    Article  Google Scholar 

  • A. Chulliat, G. Hulot, L.R. Newitt, Magnetic flux expulsion from the core as a possible cause of the unusually large acceleration of the north magnetic pole during the 1990s. J. Geophys. Res. 115, B07101 (2010). doi:10.1029/2009JB007143

    Article  Google Scholar 

  • S. Cohn, N. Sivakumaran, R. Todling, A fixed-lag Kalman smoother for retrospective data assimilation. Mon. Weather Rev. 122(12), 2838–2867 (1994). doi:10.1175/1520-0493(1994)122<2838:AFLKSF>2.0.CO;2

    Article  ADS  Google Scholar 

  • C. Constable, M. Korte, Is Earth’s magnetic field reversing? Earth Planet. Sci. Lett. 246(1–2), 1–16 (2006). doi:10.1016/j.epsl.2006.03.038

    Article  ADS  Google Scholar 

  • E. Cosme, J.M. Brankart, J. Verron, P. Brasseur, M. Krysta, Implementation of a reduced-rank, square-root smoother for high resolution ocean data assimilation. Ocean Model. 33(1–2), 87–100 (2010). doi:10.1016/j.ocemod.2009.12.004

    Article  ADS  Google Scholar 

  • P. Courtier, Variational methods. J. Meteorol. Soc. Jpn. 75(1B), 211–218 (1997)

    Google Scholar 

  • P. Courtier, O. Talagrand, Variational assimilation of meteorological observations with the adjoint vorticity equation. II: Numerical results. Q. J. R. Meteorol. Soc. 113(478), 1329–1347 (1987). doi:10.1002/gj.49711347813

    Article  ADS  Google Scholar 

  • D. Dee, A. Da Silva, Data assimilation in the presence of forecast bias. Q. J. R. Meteorol. Soc. 124(545), 269–295 (1998)

    Article  ADS  Google Scholar 

  • F. Donadini, M. Korte, C. Constable, Geomagnetic field for 0–3 ka: 1. New data sets for global modeling. Geochem. Geophys. Geosyst. 10, Q06007 (2009). doi:10.1029/2008GC002295

    Article  Google Scholar 

  • G.D. Egbert, A.F. Bennett, M.G.G. Foreman, TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res. 99(C12), 24821–24852 (1994). doi:10.1029/94JC01894

    Article  ADS  Google Scholar 

  • A. Eliassen, Provisional report on calculation of spatial covariance and autocorrelation of the pressure field. Institute of Weather and Climate Research, Academy of Sciences, Oslo, Report 5 (1954)

  • G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99(C5), 10143–10162 (1994). doi:10.1029/94JC00572

    Article  ADS  Google Scholar 

  • G. Evensen, Data Assimilation: The Ensemble Kalman Filter, 2nd edn. (Springer, Berlin, 2009). doi:10.1007/978-3-642-03711-5

    Google Scholar 

  • C. Eymin, G. Hulot, On core surface flows inferred from satellite magnetic data. Phys. Earth Planet. Inter. 152, 200–220 (2005). doi:10.1016/j.pepi.2005.06.009

    Article  ADS  Google Scholar 

  • A. Fichtner, H.P. Bunge, H. Igel, The adjoint method in seismology I. Theory. Phys. Earth Planet. Inter. 157(1–2), 86–104 (2006). doi:10.1016/j.pepi.2006.03.016

    Article  ADS  Google Scholar 

  • C.C. Finlay, Historical variation of the geomagnetic axial dipole. Phys. Earth Planet. Inter. 170(1–2), 1–14 (2008). doi:10.1016/j.pepi.2008.06.029

    Article  ADS  Google Scholar 

  • C.C. Finlay, A. Jackson, Equatorially dominated magnetic field change at the surface of earth’s core. Science 300(5628), 2084–2086 (2003). doi:10.1126/science.1083324

    Article  ADS  Google Scholar 

  • C.C. Finlay, M. Dumberry, A. Chulliat, A. Pais, Short timescale dynamics: Theory and observations. Space Sci. Rev. (2010, in revision)

  • A. Fournier, C. Eymin, T. Alboussière, A case for variational geomagnetic data assimilation: insights from a one-dimensional, nonlinear, and sparsely observed MHD system. Nonlinear Process. Geophys. 14, 163–180 (2007)

    Article  Google Scholar 

  • E. Friis-Christensen, H. Lühr, G. Hulot, Swarm: A constellation to study the Earth’s magnetic field. Earth Planets Space 58, 351–358 (2006)

    ADS  Google Scholar 

  • L.S. Gandin, Objective Analysis of Meteorological Fields (Objektivnyi Analiz Meteorologicheskikh Polei) (Gidrometeor. Izd.i, Leningrad, 1963) (in Russian). English translation by Israel program for scientific translations, Jerusalem, 1965

    Google Scholar 

  • G. Gaspari, S.E. Cohn, Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 125(554), 723–757 (1999). doi:10.1002/qj.49712555417

    Article  ADS  Google Scholar 

  • A. Genevey, Y. Gallet, C. Constable, M. Korte, G. Hulot, ArcheoInt: An upgraded compilation of geomagnetic field intensity data for the past ten millennia and its application to the recovery of the past dipole moment. Geochem. Geophys. Geosyst. 9(4), Q04038 (2008). doi:10.1029/2007GC001881

    Article  Google Scholar 

  • A. Genevey, Y. Gallet, J. Rosen, M. Le Goff, Evidence for rapid geomagnetic field intensity variations in Western Europe over the past 800 years from new French archeointensity data. Earth Planet. Sci. Lett., 132–143 (2009). doi:10.1016/j.epsl.2009.04.024

  • M. Ghil, P. Malanotte-Rizzoli, Data assimilation in meteorology and oceanography. Adv. Geophys. 33, 141–266 (1991)

    Google Scholar 

  • R. Giering, T. Kaminski, Recipes for adjoint code construction. ACM Trans. Math. Softw. 24(4), 437–474 (1998)

    Article  MATH  Google Scholar 

  • N. Gillet, D. Brito, D. Jault, H.C. Nataf, Experimental and numerical studies of convection in a rapidly rotating spherical shell. J. Fluid Mech. 580, 83–121 (2007). doi:10.1017/S0022112007005265

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • N. Gillet, A. Pais, D. Jault, Ensemble inversion of time-dependent core flow models. Geochem. Geophys. Geosyst. 10, Q06004 (2009). doi:10.1029/2008GC002290

    Article  Google Scholar 

  • N. Gillet, D. Jault, E. Canet, A. Fournier, Fast torsional waves and strong magnetic field within the Earth’s core. Nature 465, 74–77 (2010a). doi:10.1038/nature09010

    Article  ADS  Google Scholar 

  • N. Gillet, V. Lesur, N. Olsen, Geomagnetic core field secular variation models. Space Sci. Rev. (2010b, in press). doi:10.1007/s11214-009-9586-6

  • G.A. Glatzmaier, Numerical simulations of stellar convective dynamos. I—The model and method. J. Comput. Phys. 55(3), 461–484 (1984). doi:10.1016/0021-9991(84)90033-0

    Article  ADS  Google Scholar 

  • G.A. Glatzmaier, P.H. Roberts, A three-dimensional self-consistent computer simulation of a geomagnetic reversal. Nature 377, 203–209 (1995). doi:10.1038/377203a0

    Article  ADS  Google Scholar 

  • R.S. Gross, I. Fukumori, D. Menemenlis, P. Gegout, Atmospheric and oceanic excitation of length-of-day variations during 1980–2000. J. Geophys. Res. 109, B01406 (2004). doi:10.1029/2003JB002432

    Article  Google Scholar 

  • D. Gubbins, A formalism for the inversion of geomagnetic data for core motions with diffusion. Phys. Earth Planet. Inter. 98(3), 193–206 (1996). doi:10.1016/S0031-9201(96)03187-1

    Article  ADS  Google Scholar 

  • D. Gubbins, N. Roberts, Use of the frozen flux approximation in the interpretation of archeomagnetic and palaeomagnetic data. Geophys. J. R. Astron. Soc. 73(3), 675–687 (1983). doi:10.1111/j.1365-246X.1983.tb03339.x

    Google Scholar 

  • D. Gubbins, P.H. Roberts, Magnetohydrodynamics of the Earth’s core, in Geomagnetism, vol. 2, ed. by J.A. Jacobs (Academic Press, London, 1987)

    Google Scholar 

  • D. Gubbins, A.L. Jones, C.C. Finlay, Fall in Earth’s magnetic field is erratic. Science 312(5775), 900–902 (2006). doi:10.1126/science.1124855

    Article  ADS  Google Scholar 

  • N. Gustafsson, Discussion on ‘4D-Var or EnKF?’. Tellus 59A(5), 774–777 (2007). doi:10.1111/j.1600-0870.2007.00262.x

    ADS  Google Scholar 

  • J.R. Heirtzler, The future of the South Atlantic anomaly and implications for radiation damage in space. J. Atmos. Sol.-Terr. Phys. 64(16), 1701–1708 (2002). doi:10.1016/S1364-6826(02)00120-7

    Article  Google Scholar 

  • H. Hersbach, Application of the adjoint of the WAM model to inverse wave modeling. J. Geophys. Res. 103(C 5), 10469–10487 (1998). doi:10.1029/97JC03554

    Article  ADS  Google Scholar 

  • R. Hide, Free hydromagnetic oscillations of the Earth’s core and the theory of the geomagnetic secular variation. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 259, 615–647 (1966)

    Article  ADS  Google Scholar 

  • R. Holme, Large-scale flow in the core, in Core Dynamics, ed. by P. Olson, G. Schubert. Treatise on Geophysics, vol. 8 (Elsevier, Amsterdam, 2007), pp. 107–130, Chap. 4

    Chapter  Google Scholar 

  • L. Hongre, G. Hulot, A. Khokhlov, An analysis of the geomagnetic field over the past 2000 years. Phys. Earth Planet. Inter. 106(3), 311–335 (1998). doi:10.1016/S0031-9201(97)00115-5

    Article  ADS  Google Scholar 

  • G. Hulot, J.L. Le Mouël, A statistical approach to the Earth’s main magnetic field. Phys. Earth Planet. Inter. 82(3), 167–183 (1994). doi:10.1016/0031-9201(94)90070-1

    Article  ADS  Google Scholar 

  • G. Hulot, M. Le Huy, J.L. Le Mouël, Secousses (jerks) de la variation séculaire et mouvements dans le noyau terrestre. C. R. Acad. Sci. Sér. 2, Méc. Phys. Chim. Sci. Univers Sci. Terre 317(3), 333–341 (1993)

    Google Scholar 

  • G. Hulot, A. Khokhlov, J.L. Le Mouël, Uniqueness of mainly dipolar magnetic fields recovered from directional data. Geophys. J. Int. 129(2), 347–354 (1997). doi:10.1111/j.1365-246X.1997.tb01587.x

    Article  ADS  Google Scholar 

  • G. Hulot, C. Eymin, B. Langlais, M. Mandea, N. Olsen, Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data. Nature 416(6881), 620–623 (2002). doi:10.1038/416620a

    Article  ADS  Google Scholar 

  • G. Hulot, T. Sabaka, N. Olsen, The present field, in Geomagnetism, ed. by M. Kono, G. Schubert. Treatise on Geophysics, vol. 5 (Elsevier, Amsterdam, 2007), Chap. 2

    Google Scholar 

  • G. Hulot, N. Olsen, E. Thebault, K. Hemant, Crustal concealing of small-scale core-field secular variation. Geophys. J. Int. 177(2), 361–366 (2009). doi:10.1111/j.1365-246X.2009.04119.x

    Article  ADS  Google Scholar 

  • G. Hulot, F. Lhuillier, J. Aubert, Earth’s dynamo limit of predictability. Geophys. Res. Lett. 37, L06305 (2010a). doi:10.1029/2009GL041869

    Article  Google Scholar 

  • G. Hulot, C.C. Finlay, C.G. Constable, N. Olsen, M. Mandea, The magnetic field of planet Earth. Space Sci. Rev. 152(1–4), 159–222 (2010b). doi:10.1007/s11214-010-9644-0

    Article  ADS  Google Scholar 

  • K. Ide, P. Courtier, M. Ghil, A.C. Lorenc, Unified notation for data assimilation: Operational, sequential and variational. J. Meteorol. Soc. Jpn. 75, 181–189 (1997)

    Google Scholar 

  • A. Jackson, The Earth’s magnetic field at the core-mantle boundary. Ph.D. Thesis, Cambridge (1989)

  • A. Jackson, Time-dependency of tangentially geostrophic core surface motions. Phys. Earth Planet. Inter. 103, 293–311 (1997). doi:10.1016/S0031-9201(97)00039-3

    Article  ADS  Google Scholar 

  • A. Jackson, C.C. Finlay, Geomagnetic secular variation and its application to the core, in Geomagnetism, ed. by P. Olson, G. Schubert. Treatise on Geophysics, vol. 5 (Elsevier, Amsterdam, 2007), pp. 148–193, Chap. 5

    Chapter  Google Scholar 

  • A. Jackson, J. Bloxham, D. Gubbins, Time-dependent flow at the core surface and conservation of angular momentum in the coupled core–mantle system, in Dynamics of Earth’s Deep Interior and Earth Rotation, ed. by J.L. Le Mouël, D.E. Smylie, T. Herring. (American Geophysical Union, Washington, 1993), pp. 97–107

    Google Scholar 

  • A. Jackson, A. Jonkers, M. Walker, Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. Ser. A, Math. Phys. Eng. Sci. 358(1768), 957–990 (2000)

    Article  ADS  Google Scholar 

  • D. Jault, Axial invariance of rapidly varying diffusionless motions in the Earth’s core interior. Phys. Earth Planet. Inter. 166(1–2), 67–76 (2008). doi:10.1016/j.pepi.2007.11.001

    ADS  Google Scholar 

  • D. Jault, C. Gire, J.L. Le Mouël, Westward drift, core motions and exchanges of angular momentum between core and mantle. Nature 333(6171), 353–356 (1988). doi:10.1038/333353a0

    Article  ADS  Google Scholar 

  • C. Jones, N. Weiss, F. Cattaneo, Nonlinear dynamos: a complex generalization of the Lorenz equations. Physica D 14, 161–176 (1985). doi:10.1016/0167-2789(85)90176-9

    MATH  MathSciNet  ADS  Google Scholar 

  • A. Kageyama, T. Sato, Generation mechanism of a dipole field by a magnetohydrodynamic dynamo. Phys. Rev. E 55(4), 4617–4626 (1997). doi:10.1103/PhysRevE.55.4617

    MathSciNet  ADS  Google Scholar 

  • E. Kalnay, Atmospheric Modeling, Data Assimilation, and Predictability (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  • E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen et al., The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77(3), 437–471 (1996). doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  ADS  Google Scholar 

  • E. Kalnay, H. Li, T. Miyoshi, S. Yang, J. Ballabrera-Poy, 4-D-Var or ensemble Kalman filter? Tellus 59A(5), 758–773 (2007a). doi:10.1111/j.1600-0870.2007.00261.x

    ADS  Google Scholar 

  • E. Kalnay, H. Li, T. Miyoshi, S. Yang, J. Ballabrera-Poy, Response to the discussion on “4D-Var or EnKF?” by Nils Gustaffson. Tellus 59A(5), 778–780 (2007b). doi:10.1111/j.1600-0870.2007.00263.x

    ADS  Google Scholar 

  • A. Kelbert, G. Egbert, A. Schultz, Non-linear conjugate gradient inversion for global EM induction: resolution studies. Geophys. J. Int. 173(2), 365–381 (2008). doi:10.1111/j.1365-246X.2008.03717.x

    Article  ADS  Google Scholar 

  • K. Korhonen, F. Donadini, P. Riisager, L.J. Pesonen, GEOMAGIA50: An archeointensity database with PHP and MySQL. Geochem. Geophys. Geosyst. 9, Q04029 (2008). doi:10.1029/2007GC001893

    Article  Google Scholar 

  • M. Korte, C.G. Constable, Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K. Geochem. Geophys. Geosyst. 6(2), Q02H16 (2005). doi:10.1029/2004GC000801

    Article  Google Scholar 

  • M. Korte, F. Donadini, C.G. Constable, Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models. Geochem. Geophys. Geosyst. 10, Q06008 (2009). doi:10.1029/2008GC002297

    Article  Google Scholar 

  • W. Kuang, J. Bloxham, An Earth-like numerical dynamo model. Nature 389(6649), 371–374 (1997). doi:10.1038/38712

    Article  ADS  Google Scholar 

  • W. Kuang, A. Tangborn, W. Jiang, D. Liu, Z. Sun, J. Bloxham, Z. Wei, MoSST-DAS: the first generation geomagnetic data assimilation framework. Commun. Comput. Phys. 3, 85–108 (2008)

    MATH  Google Scholar 

  • W. Kuang, A. Tangborn, Z. Wei, T. Sabaka, Constraining a numerical geodynamo model with 100-years of geomagnetic observations. Geophys. J. Int. 179(3), 1458–1468 (2009). doi:10.1111/j.1365-246X.2009.04376.x

    Article  ADS  Google Scholar 

  • W. Kuang, Z. Wei, R. Holme, A. Tangborn, Prediction of geomagnetic field with data assimilation: a candidate secular variation model for IGRF-11. Earth Planets Space (2010, accepted)

  • A. Kushinov, J. Velímský, P. Tarits, A. Semenov, O. Pankratov, L. Tøffner-Clausen, Z. Martinec, N. Olsen, T.J. Sabaka, A. Jackson, Level 2 products and performances for mantle studies with Swarm. ESA Technical Report (2010)

  • F.X. Le Dimet, O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus 38(2), 97–110 (1986)

    Google Scholar 

  • B. Lehnert, Magnetohydrodynamic waves under the action of the Coriolis force. Astrophys. J. 119, 647–654 (1954). doi:10.1086/145869

    Article  MathSciNet  ADS  Google Scholar 

  • V. Lesur, I. Wardinski, Comment on“Can core-surface flow models be used to improve the forecast of the Earth’s main magnetic field?” by Stefan Maus, Luis Silva, and Gauthier Hulot. J. Geophys. Res. 114, B04104 (2009). doi:10.1029/2008JB006188

    Article  Google Scholar 

  • V. Lesur, I. Wardinski, M. Rother, M. Mandea, GRIMM: the GFZ reference internal magnetic model based on vector satellite and observatory data. Geophys. J. Int. 173(2), 382–394 (2008). doi:10.1111/j.1365-246X.2008.03724.x

    Article  ADS  Google Scholar 

  • V. Lesur, I. Wardinski, S. Asari, B. Minchev, M. Mandea, Modelling the Earth’s core magnetic field under flow constraints. Earth Planets Space (2010). doi:10.5047/eps.2010.02.010

    Google Scholar 

  • L. Liu, M. Gurnis, Simultaneous inversion of mantle properties and initial conditions using an adjoint of mantle convection. J. Geophys. Res. 113, B8405 (2008). doi:10.1029/2008JB005594

    Article  Google Scholar 

  • D. Liu, A. Tangborn, W. Kuang, Observing system simulation experiments in geomagnetic data assimilation. J. Geophys. Res. 112, B8 (2007). doi:10.1029/2006JB004691

    Google Scholar 

  • L. Liu, S. Spasojevic, M. Gurnis, Reconstructing Farallon plate subduction beneath North America back to the late cretaceous. Science 322(5903), 934–938 (2008). doi:10.1126/science.1162921

    Article  ADS  Google Scholar 

  • P.W. Livermore, G.R. Ierley, A. Jackson, The construction of exact Taylor states. I: The full sphere. Geophys. J. Int. 179(2), 923–928 (2009). doi:10.1111/j.1365-246X.2009.04340.x

    Article  ADS  Google Scholar 

  • P.W. Livermore, G.R. Ierley, A. Jackson, The construction of exact Taylor states. II: The influence of an inner core. Phys. Earth Planet. Inter. 178, 16–26 (2010). doi:10.1016/j.pepi.2009.07.015

    Article  ADS  Google Scholar 

  • A.C. Lorenc, Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc. 112(474), 1177–1194 (1986). doi:10.1002/qj.49711247414

    Article  ADS  Google Scholar 

  • E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  • S. Maus, S. Macmillan, T. Chernova, S. Choi, D. Dater, V. Golovkov, V. Lesur, F. Lowes, H. Lühr, W. Mai, S. McLean, N. Olsen, M. Rother, T. Sabaka, A. Thomson, T. Zvereva, The 10th-generation international geomagnetic reference field. Geophys. J. Int. 161, 561–565 (2005). doi:10.1111/j.1365-246X.2005.02641.x

    Article  Google Scholar 

  • S. Maus, L. Silva, G. Hulot, Can core-surface flow models be used to improve the forecast of the Earth’s main magnetic field? J. Geophys. Res. 113, B08102 (2008). doi:10.1029/2007JB005199

    Article  Google Scholar 

  • S. Maus, L. Silva, G. Hulot, Reply to comment by V. Lesur et al. on “Can core-surface flow models be used to improve the forecast of the Earth’s main magnetic field”. J. Geophys. Res. 114, B04105 (2009). doi:10.1029/2008JB006242

    Article  Google Scholar 

  • H. Meyers, W.M. Davis, A profile of the geomagnetic model users and abusers. J. Geomagn. Geoelectr. 42(9), 1079–1085 (1990)

    Google Scholar 

  • R.N. Miller, M. Ghil, F. Gauthiez, Advanced data assimilation in strongly nonlinear dynamical systems. J. Atmos. Sci. 51(8), 1037–1056 (1994). doi:10.1175/1520-0469(1994)051<1037:ADAISN>2.0.CO;2

    Article  MathSciNet  ADS  Google Scholar 

  • R. Monchaux, M. Berhanu, M. Bourgoin, M. Moulin, P. Odier, J.F. Pinton, R. Volk, S. Fauve, N. Mordant, F. Pétrélis, et al., Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. Phys. Rev. Lett. 98(4), 044502 (2007). doi:10.1103/PhysRevLett.98.044502

    Article  ADS  Google Scholar 

  • H.C. Nataf, T. Alboussière, D. Brito, P. Cardin, N. Gagnière, D. Jault, J.P. Masson, D. Schmitt, Experimental study of super-rotation in a magnetostrophic spherical Couette flow. Geophys. Astrophys. Fluid Dyn. 100, 281–298 (2006). doi:10.1080/03091920600718426

    Article  ADS  Google Scholar 

  • N. Olsen, M. Mandea, Rapidly changing flows in the earth’s core. Nat. Geosci. 1, 390–394 (2008). doi:10.1038/ngeo203

    Article  ADS  Google Scholar 

  • N. Olsen, R. Holme, G. Hulot, T. Sabaka, T. Neubert, L. Tøffner-Clausen, F. Primdahl, J. Jørgensen, J. Léger, D. Barraclough, J. Bloxham, J. Cain, C. Constable, V. Golovkov, A. Jackson, P. Kotze, B. Langlais, S. Macmillan, M. Mandea, J. Merayo, L. Newitt, M. Purucker, T. Risbo, M. Stampe, A. Thomson, C. Voorhies, Ørsted initial field model. Geophys. Res. Lett. 27(22), 3607–3610 (2000). doi:10.1029/2000GL011930

    Article  ADS  Google Scholar 

  • N. Olsen, H. Lühr, T.J. Sabaka, M. Mandea, M. Rother, L. Tøffner-Clausen, S. Choi, CHAOS-a model of the Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophys. J. Int. 166(1), 67–75 (2006). doi:10.1111/j.1365-246X.2006.02959.x

    Article  ADS  Google Scholar 

  • N. Olsen, M. Mandea, T. Sabaka, L. Tøffner-Clausen, CHAOS-2—a geomagnetic field model derived from one decade of continuous satellite data. Geophys. J. Int. 179(3), 1477–1487 (2009). doi:10.1111/j.1365-246X.2009.04386.x

    Article  ADS  Google Scholar 

  • A. Pais, G. Hulot, Length of day decade variations, torsional oscillations and inner core superrotation: evidence from recovered core surface zonal flows. Phys. Earth Planet. Inter. 118(3–4), 291–316 (2000). doi:10.1016/S0031-9201(99)00161-2

    Article  ADS  Google Scholar 

  • T. Penduff, P. Brasseur, C. Testut, B. Barnier, J. Verron, A four-year eddy-permitting assimilation of sea-surface temperature and altimetric data in the South Atlantic Ocean. J. Mar. Res. 60(6), 805–833 (2002). doi:10.1357/002224002321505147

    Article  Google Scholar 

  • K. Pinheiro, A. Jackson, Can a 1-D mantle electrical conductivity model generate magnetic jerk differential time delays? Geophys. J. Int. 173(3), 781–792 (2008). doi:10.1111/j.1365-246X.2008.03762.x

    Article  ADS  Google Scholar 

  • L.F. Richardson, Weather Prediction by Numerical Process (Cambridge University Press, Cambridge, 1922)

    MATH  Google Scholar 

  • P.H. Roberts, S. Scott, On analysis of the secular variation. J. Geomagn. Geoelectr. 17(2), 137–151 (1965)

    Google Scholar 

  • T. Sabaka, N. Olsen, M. Purucker, Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys. J. Int. 159(2), 521–547 (2004). doi:10.1111/j.1365-246X.2004.02421.x

    Article  ADS  Google Scholar 

  • A. Sakuraba, P.H. Roberts, Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nat. Geosci. 2, 802–805 (2009). doi:10.1038/ngeo643

    Article  ADS  Google Scholar 

  • M. Sambridge, P. Rickwood, N. Rawlinson, S. Sommacal, Automatic differentiation in geophysical inverse problems. Geophys. J. Int. 170(1), 1–8 (2007). doi:10.1111/j.1365-246X.2007.03400.x

    Article  ADS  Google Scholar 

  • Y. Sasaki, Some basic formalisms in numerical variational analysis. Mon. Weather Rev. 98(12), 875–883 (1970). doi:10.1175/1520-0493(1970)098<0875:SBFINV>2.3.CO;2

    Article  ADS  Google Scholar 

  • L. Scherliess, R.W. Schunk, J.J. Sojka, D.C. Thompson, L. Zhu, Utah State University Global Assimilation of Ionospheric Measurements Gauss-Markov Kalman filter model of the ionosphere: Model description and validation. J. Geophys. Res. 111, A11315 (2006). doi:10.1029/2006JA011712

    Article  ADS  Google Scholar 

  • D. Schmitt, T. Alboussière, D. Brito, P. Cardin, N. Gagnière, D. Jault, H.C. Nataf, Rotating spherical Couette flow in a dipolar magnetic field: experimental study of magneto-inertial waves. J. Fluid Mech. 604, 175–197 (2008). doi:10.1017/S0022112008001298

    Article  MATH  ADS  Google Scholar 

  • Z. Sun, A. Tangborn, W. Kuang, Data assimilation in a sparsely observed one-dimensional modeled MHD system. Nonlinear Process. Geophys. 14(2), 181–192 (2007)

    Article  ADS  Google Scholar 

  • F. Takahashi, M. Matsushima, Y. Honkura, Scale variability in convection-driven mhd dynamos at low Ekman number. Phys. Earth Planet. Inter. 167, 168–178 (2008). doi:10.1016/j.pepi.2008.03.005

    Article  ADS  Google Scholar 

  • O. Talagrand, The use of adjoint equations in numerical modelling of the atmospheric circulation, in Automatic Differentiation of Algorithms: Theory, Implementation, and Application, ed. by A. Griewank, G.G. Corliss. (Society for Industrial and Applied Mathematics, Philadelphia, 1991), pp. 169–180

    Google Scholar 

  • O. Talagrand, Assimilation of observations, an introduction. J. Meteorol. Soc. Jpn. 75(1B), 191–209 (1997)

    MathSciNet  Google Scholar 

  • O. Talagrand, A posteriori validation of assimilation algorithms, in Data Assimilation for the Earth System, ed. by R. Swinbank, V. Shutyaev, W. Lahoz. (Kluwer Academic, Dordrecht, 2003), pp. 85–95

    Google Scholar 

  • O. Talagrand, P. Courtier, Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Q. J. R. Meteorol. Soc. 113(478), 1311–1328 (1987). doi:10.1002/gj.49711347812

    Article  ADS  Google Scholar 

  • A. Tarantola, Inversion of seismic reflection data in the acoustic approximation. Geophysics 49(8), 1259–1266 (1984). doi:10.1190/1.1441754

    Article  ADS  Google Scholar 

  • A. Tarantola, Theoretical background for the inversion of seismic waveforms including elasticity and attenuation. Pure Appl. Geophys. 128(1), 365–399 (1988). doi:10.1007/BF01772605

    Article  ADS  Google Scholar 

  • J.B. Taylor, The magneto-hydrodynamics of a rotating fluid and the earth’s dynamo problem. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 274(1357), 274–283 (1963)

    Article  MATH  ADS  Google Scholar 

  • E. Thébault, A. Chulliat, S. Maus, G. Hulot, B. Langlais, A. Chambodut, M. Menvielle, IGRF candidate models at times of rapid changes in core field acceleration. Earth Planets Space (2010). doi:10.5047/eps.2010.05.004

    Google Scholar 

  • Y. Trémolet, Accounting for an imperfect model in 4D-Var. Q. J. R. Meteorol. Soc. 132(621), 2483–2504 (2006). doi:10.1256/qj.05.224

    Article  ADS  Google Scholar 

  • J. Tromp, C. Tape, Q. Liu, Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophys. J. Int. 160(1), 195–216 (2005). doi:10.1111/j.1365-246X.2004.02453.x

    Article  ADS  Google Scholar 

  • J. Tromp, D. Komatitsch, Q. Liu, Spectral-element and adjoint methods in seismology. Commun. Comput. Phys. 3, 1–32 (2008)

    MATH  Google Scholar 

  • N.A. Tsyganenko, M.I. Sitnov, Magnetospheric configurations from a high-resolution data-based magnetic field model. J. Geophys. Res. 112, A06225 (2007). doi:10.1029/2007JA012260

    Article  Google Scholar 

  • F. Uboldi, M. Kamachi, Time-space weak-constraint data assimilation for nonlinear models. Tellus A 52(4), 412–421 (2000). doi:10.1034/j.1600-0870.2000.00878.x

    Article  ADS  Google Scholar 

  • R. Waddington, D. Gubbins, N. Barber, Geomagnetic field analysis-V. Determining steady core-surface flows directly from geomagnetic observations. Geophys. J. Int. 122(1), 326–350 (1995). doi:10.1111/j.1365-246X.1995.tb03556.x

    Article  ADS  Google Scholar 

  • P. Wessel, W.H.F. Smith, Free software helps map and display data. Trans. Am. Geophys. Union 72, 441–445 (1991). doi:10.1029/90EO00319

    Article  ADS  Google Scholar 

  • K. Whaler, D. Gubbins, Spherical harmonic analysis of the geomagnetic field: an example of a linear inverse problem. Geophys. J. R. Astron. Soc. 65(3), 645–693 (1981). doi:10.1111/j.1365-246X.1981.tb04877.x

    MATH  ADS  Google Scholar 

  • C. Wunsch, Discrete Inverse and State Estimation Problems (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Fournier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fournier, A., Hulot, G., Jault, D. et al. An Introduction to Data Assimilation and Predictability in Geomagnetism. Space Sci Rev 155, 247–291 (2010). https://doi.org/10.1007/s11214-010-9669-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-010-9669-4

Keywords

Navigation