Skip to main content
Log in

Three-dimensional thermo-rheological structure of the lithosphere in the North China Craton determined by integrating multiple observations: Implications for the formation of rifts

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The lithosphere of the North China Craton (NCC) has experienced significant destruction and deformation since the Mesozoic, a notable feature of which is the widespread extensional structure and lithospheric thinning in the eastern NCC. Since the thermo-rheological structure of the lithosphere is one of the main factors controlling these dynamic processes, a three-dimensional thermo-rheological model of the present lithosphere in the NCC was developed based on a geophysical-petrological method using a variety of data, and its relationship with the extensional structures and the formation of rifts was further analyzed. Our results show that the western NCC is characterized by thick lithosphere, low Moho temperature (TMoho<600°C), as well as high lithospheric strength and mantle-crust strength ratio (Sm/Sc>1). The deformation of the western narrow rift is consistent with the localized deformation dominated by the strength of lithospheric mantle. On the other hand, the lithosphere in the eastern NCC is characterized by extensive thinning (with lithospheric thickness of about 80–110 km). However, the decrease of lithospheric strength is not uniform, with high strength (10×1012 Pa m) observed in some areas (such as the Bohai Bay Basin and Hehuai Basin). Most of the eastern lithosphere is characterized by high TMoho (600–750°C) and low Sm/Sc (<1), which is inconsistent with the widespread extensional structure in the eastern NCC. Incorporating results from palaeo-geothermal and petrological studies, we developed a thermo-rheological structure model of the lithosphere at different evolutionary stages of the NCC, and suggested that the eastern NCC had a significantly thinned and weakened lithosphere in the early stages of the formation of the rift, leading to a regional distributed extension deformation dominated by crustal strength, which eventually evolved into a series of wide rifts. However, the cooling and accretion of the lithosphere in the subsequent stages significantly increased the strength of the lithospheric mantle, resulting in the inconsistency between the present thermo-rheological structure of the lithosphere and the extensional structure formed in the past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afonso J C, Fernàndez M, Ranalli G, Griffin W L, Connolly J A D. 2008. Integrated geophysical-petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications. Geochem Geophys Geosyst, 9: Q05008

    Article  Google Scholar 

  • Afonso J C, Ranalli G. 2004. Crustal and mantle strengths in continental lithosphere: Is the jelly sandwich model obsolete?. Tectonophysics, 394: 221–232

    Article  Google Scholar 

  • Bao X, Xu M, Wang L, Mi N, Yu D, Li H. 2011. Lithospheric structure of the Ordos Block and its boundary areas inferred from Rayleigh wave dispersion. Tectonophysics, 499: 132–141

    Article  Google Scholar 

  • Bao X, Song X, Xu M, Wang L, Sun X, Mi N, Yu D, Li H. 2013. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications. Earth Planet Sci Lett, 369–370: 129–137

    Article  Google Scholar 

  • Bowin C. 2000. Mass anomaly structure of the Earth. Rev Geophys, 38: 355–387

    Article  Google Scholar 

  • Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull Seismol Soc Am, 95: 2081–2092

    Article  Google Scholar 

  • Buck W R. 1991. Modes of continental lithospheric extension. J Geophys Res, 96: 20161–20178

    Article  Google Scholar 

  • Bürgmann R, Dresen G. 2008. Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations. Annu Rev Earth Planet Sci, 36: 531–567

    Article  Google Scholar 

  • Chen B, Chen C, Kaban M K, Du J, Liang Q, Thomas M. 2013. Variations of the effective elastic thickness over China and surroundings and their relation to the lithosphere dynamics. Earth Planet Sci Lett, 363: 61–72

    Article  Google Scholar 

  • Chen L, Cheng C, Wei Z. 2009. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton. Earth Planet Sci Lett, 286: 171–183

    Article  Google Scholar 

  • Chen L, Tao W, Zhao L, Zheng T. 2008. Distinct lateral variation of lithospheric thickness in the Northeastern North China Craton. Earth Planet Sci Lett, 267: 56–68

    Article  Google Scholar 

  • Chen L, Zheng T Y, Xu W W. 2006. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration. J Geophys Res, 111: B09312

    Google Scholar 

  • Christensen N I, Mooney W D. 1995. Seismic velocity structure and composition of the continental crust: A global view. J Geophys Res, 100: 9761–9788

    Article  Google Scholar 

  • Connolly J A D. 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett, 236: 524–541

    Article  Google Scholar 

  • Deng Y, Tesauro M. 2016. Lithospheric strength variations in Mainland China: Tectonic implications. Tectonics, 35: 2313–2333

    Article  Google Scholar 

  • Fullea J, Afonso J C, Connolly J A D, Fernàndez M, García-Castellanos D, Zeyen H. 2009. LitMod3D: An interactive 3-D software to model the thermal, compositional, density, seismological, and rheological structure of the lithosphere and sublithospheric upper mantle. Geochem Geophys Geosyst, 10: Q08019

    Google Scholar 

  • Fullea J, Muller M R, Jones A G, Afonso J C. 2014. The lithosphere-asthenosphere system beneath Ireland from integrated geophysical-petrological modeling II: 3D thermal and compositional structure. Lithos, 189: 49–64

    Article  Google Scholar 

  • Gao S, Rudnick R L, Carlson R W, McDonough W F, Liu Y S. 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet Sci Lett, 198: 307–322

    Article  Google Scholar 

  • Ge C, Zheng Y, Xiong X. 2011. Study of crustal thickness and Poisson ratio of the North China Craton (in Chinese). Chin J Geophys, 54: 2538–2548

    Google Scholar 

  • Griffin W L, O’Reilly S Y, Afonso J C, Begg G C. 2009. The composition and evolution of lithospheric mantle: A Re-evaluation and its tectonic implications. J Petrol, 50: 1185–1204

    Article  Google Scholar 

  • Griffin W L, Zhang A D, O’Reilly S Y, Ryan G. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower M, Chung S L, Lo C H, Lee T Y, eds. Mantle Dynamics and Plate Interactions in East Asia. 107–126

    Chapter  Google Scholar 

  • Gueydan F, Morency C, Brun J P. 2008. Continental rifting as a function of lithosphere mantle strength. Tectonophysics, 460: 83–93

    Article  Google Scholar 

  • Guo Z, Afonso J C, Qashqai M T, Yang Y, Chen Y J. 2016. Thermochemical structure of the North China Craton from multi-observable probabilistic inversion: Extent and causes of cratonic lithosphere modification. Gondwana Res, 37: 252–265

    Article  Google Scholar 

  • Hirth G, Kohlstedt D L. 1996. Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett, 144: 93–108

    Article  Google Scholar 

  • Hu S B, He L J, Wang J Y. 2001. Compilation of heat flow data in the China continental area (3rd ed) (in Chinese). Chin J Geophys, 44: 611–624

    Google Scholar 

  • Huang Z X, Li H Y, Zheng Y J, Peng Y J. 2009. The lithosphere of North China Craton from surface wave tomography. Earth Planet Sci Lett, 288: 164–173

    Article  Google Scholar 

  • Jiang G Z, Gao P, Rao S, Zhang L Y, Tang X Y, Huang F. 2016. Compilation of heat flow data in the continental area of China (4th ed) (in Chinese). Chin J Geophys, 59: 2892–2910

    Google Scholar 

  • Jiang G Z, Hu S B, Shi Y Z, Zhang C, Wang Z T, Hu D. 2019. Terrestrial heat flow of continental China: Updated dataset and tectonic implications. Tectonophysics, 753: 36–48

    Article  Google Scholar 

  • Jiménez-Munt I, Fernàndez M, Vergés J, Platt J P. 2008. Lithosphere structure underneath the Tibetan Plateau inferred from elevation, gravity and geoid anomalies. Earth Planet Sci Lett, 267: 276–289

    Article  Google Scholar 

  • Kirby S H. 1983. Rheology of the lithosphere. Rev Geophys, 21: 1458–1487

    Article  Google Scholar 

  • Kusznir N J, Park R G. 1982. Intraplate lithosphere strength and heat flow. Nature, 299: 540–542

    Article  Google Scholar 

  • Lachenbruch A H, Morgan P. 1990. Continental extension, magmatism and elevation; formal relations and rules of thumb. Tectonophysics, 174: 39–62

    Article  Google Scholar 

  • Laske G, Masters G, Ma Z, Pasyanos M. 2013. Update on CRUST1.0-A 1-degree Global Model of Earth’s Crust. Geophys. Res. Abstracts, 15. Abstract EGU2013-2658

    Google Scholar 

  • Lei J S. 2012. Upper-mantle tomography and dynamics beneath the North China Craton. J Geophys Res, 117: B06313

    Google Scholar 

  • Lemoine F G, Kenyon S C, Factor J K, Trimmer R G, Pavlis N K, Chinn D S, Wang Y M. 1998. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. Cambridge: MIT Press. 103–115

    Google Scholar 

  • Li C, van der Hilst R D, Toksöz M N. 2006. Constraining P-wave velocity variations in the upper mantle beneath Southeast Asia. Phys Earth Planet Inter, 154: 180–195

    Article  Google Scholar 

  • Li Y, Gao M, Wu Q. 2014. Crustal thickness map of the Chinese mainland from teleseismic receiver functions. Tectonophysics, 611: 51–60

    Article  Google Scholar 

  • Lin W, Faure M, Monié P, Schärer U, Panis D. 2008. Mesozoic extensional tectonics in eastern Asia: The South Liaodong Peninsula metamorphic core complex (NE China). J Geol, 116: 134–154

    Article  Google Scholar 

  • Liu D Y, Nutman A P, Compston W, Wu J S, Shen Q H. 1992. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20: 339

    Article  Google Scholar 

  • Liu M, Cui X, Liu F. 2004. Cenozoic rifting and volcanism in eastern China: A mantle dynamic link to the Indo-Asian collision? Tectonophysics, 393: 29–42

    Article  Google Scholar 

  • Menzies M A, Fan W M, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of N120 km of Archaean lithosphere, Sino-Korean craton, China. In: Prichard H M, Alabaster T, Harris N B W, Neary C R, eds. Magmatic Processes and Plate Tectonics. 71–78

    Google Scholar 

  • Menzies M A, Xu Y. 1998. Geodynamics of the North China Craton. In: Flower M, Chung S L, Lo C H, Lee T Y, eds. Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union. 155–165

    Chapter  Google Scholar 

  • Molnar P, Tapponnier P. 1977. Relation of the tectonics of eastern China to the India-Eurasia collision: Application of slip-line field theory to large-scale continental tectonics. Geology, 5: 212–216

    Article  Google Scholar 

  • Powell W G, Chapman D S, Balling N, Beck E. 1988. Continental heat-flow density. In: Haenel R, Rybach L, Stegena L, eds. Handbook of Terrestrial Heat-Flow Density Determination. Hingham: Kluwer Academic. 167–222

    Chapter  Google Scholar 

  • Ranalli G. 1991. Regional variations in lithosphere rheology from heat flow observations. In: Cermak V, Rybach L, eds. Terrestrial Heat Flow and the Lithosphere Structure. Berlin: Springer. 1-22

    Google Scholar 

  • Sandwell D T, Smith W H F. 1997. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J Geophys Res, 102: 10039–10054

    Article  Google Scholar 

  • Sun W, Kennett B L N. 2016a. Uppermost mantle P wavespeed structure beneath eastern China and its surroundings. Tectonophysics, 683: 12–26

    Article  Google Scholar 

  • Sun W, Kennett B L N. 2016b. Uppermost mantle structure beneath eastern China and its surroundings from Pn and Sn tomography. Geophys Res Lett, 43: 3143–3149

    Article  Google Scholar 

  • Sun W, Kennett B L N. 2017. Mid-lithosphere discontinuities beneath the western and central North China Craton. Geophys Res Lett, 44: 1302–1310

    Article  Google Scholar 

  • Sun Y, Xu L, Kuleli S, Morgan F D, Toksoz M N. 2004. Adaptive moving window method for 3D P-velocity tomography and its application in China. Bull Seismol Soc Am, 94: 740–746

    Article  Google Scholar 

  • Tian Y, Zhao D, Sun R, Teng J. 2009. Seismic imaging of the crust and upper mantle beneath the North China Craton. Phys Earth Planet Inter, 172: 169–182

    Article  Google Scholar 

  • Wang J Y, Huang S P. 1988. Compilation of heat flow data for continental area of China (in Chinese). Sci Geol Sin, 2: 196–204

    Google Scholar 

  • Wang J Y, Huang S P. 1990. Compilation of heat flow data for continental area of China (in Chinese). Seismol Geol, 12: 351–366

    Google Scholar 

  • Wang Y, Cheng S H. 2012. Lithospheric thermal structure and rheology of the eastern China. J Asian Earth Sci, 47: 51–63

    Article  Google Scholar 

  • Wang Y. 2001. Heat flow pattern and lateral variations of lithosphere strength in China mainland: Constraints on active deformation. Phys Earth Planet Inter, 126: 121–146

    Article  Google Scholar 

  • Wessel P, Smith W H F. 1998. New, improved version of generic mapping tools released. Eos Trans AGU, 79: 579

    Article  Google Scholar 

  • White R S. 1988. The Earth’s crust and lithosphere. J Petrol, Special_Volume: 1–10

  • Wu F Y, Lin J Q, Wilde S A, Zhang X O, Yang J H. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 233: 103–119

    Article  Google Scholar 

  • Wu F Y, Xu Y G, Gao S, Zheng J P. 2008. Lithospheric thinning and destruction of the North China Craton (in Chinese). Acta Petrol Sin, 24: 1145–1174

    Google Scholar 

  • Xia Q K, Hao Y, Li P, Deloule E, Coltorti M, Dallai L, Yang X, Feng M. 2010. Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton. J Geophys Res, 115: B07207

    Article  Google Scholar 

  • Xia Q K, Liu J, Liu S C, Kovács I, Feng M, Dang L. 2013. High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth Planet Sci Lett, 361: 85–97

    Article  Google Scholar 

  • Xu Y G, Li H Y, Pang C J, He B. 2009. On the timing and duration of the destruction of the North China Craton. Chin Sci Bull, 54: 1973–1989

    Google Scholar 

  • Xu Y G. 2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism. Phys Chem Earth Part A-Solid Earth Geodesy, 26: 747–757

    Article  Google Scholar 

  • Yang J H, Wu F Y, Chung S L, Lo C H, Wilde S A, Davis G A. 2007. Rapid exhumation and cooling of the Liaonan metamorphic core complex: Inferences from 40Ar/39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton. Geol Soc Am Bull, 119: 1405–1414

    Article  Google Scholar 

  • Ye H, Zhang B, Mao F. 1987. The Cenozoic tectonic evolution of the Great North China: Two types of rifting and crustal necking in the Great North China and their tectonic implications. Tectonophysics, 133: 217–227

    Article  Google Scholar 

  • Yin A. 2010. Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics, 488: 293–325

    Article  Google Scholar 

  • Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annu Rev Earth Planet Sci, 28: 211–280

    Article  Google Scholar 

  • Zang S X, Liu Y G, Ning J Y. 2002. Thermal structure of the lithosphere in North China (in Chinese). Chin J Geophys, 45: 56–66

    Google Scholar 

  • Zang S X, Qiang Wei R, Liu Y G. 2005. Three-dimensional rheological structure of the lithosphere in the Ordos block and its adjacent area. Geophys J Int, 163: 339–356

    Article  Google Scholar 

  • Zeyen H, Fernàndez M. 1994. Integrated lithospheric modeling combining thermal, gravity, and local isostasy analysis: Application to the NE Spanish Geotransect. J Geophys Res, 99: 18089–18102

    Article  Google Scholar 

  • Zhao G, Wilde S A, Cawood P A, Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 107: 45–73

    Article  Google Scholar 

  • Zhao L, Allen R M, Zheng T, Hung S H. 2009. Reactivation of an Archean craton: Constraints from P- and S-wave tomography in North China. Geophys Res Lett, 36: L17306

    Google Scholar 

  • Zheng J P, Griffin W L, O’Reilly S Y, Yu C M, Zhang H F, Pearson N, Zhang M. 2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta, 71: 5203–5225

    Article  Google Scholar 

  • Zheng Y, Li Y D, Xiong X. 2012. Effective lithospheric thickness and its anisotropy in the North China Craton (in Chinese). Chin J Geophys, 55: 3576–3590

    Google Scholar 

  • Zhu R X, Chen L, Wu F Y, Liu J L. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci China Earth Sci, 54: 789–797

    Article  Google Scholar 

  • Zhu R X, Xu Y G, Zhu G, Zhang H F, Xia Q K, Zheng T Y. 2012. Destruction of the North China Craton. Sci China Earth Sci, 55: 1565–1587

    Article  Google Scholar 

  • Zhu R X, Zheng T Y. 2009. Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics. Chin Sci Bull, 54: 1950–1961

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to two reviewers and editorial board for their comments and suggestions. Thanks to Professor Bin SHAN and Professor Faqi DIAO of China University of Geosciences (Wuhan) and all team members for their many discussions and valuable comments for this paper. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41731072, 41574095) and the National Key R & D Program of China (Grant No. 2017YFC1500305). Most figures were prepared with the Generic Mapping Tools (Wessel and Smith, 1998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Xiong, X., Zhou, Y. et al. Three-dimensional thermo-rheological structure of the lithosphere in the North China Craton determined by integrating multiple observations: Implications for the formation of rifts. Sci. China Earth Sci. 63, 969–984 (2020). https://doi.org/10.1007/s11430-019-9566-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9566-1

Keywords

Navigation