Skip to main content

Part of the book series: Solid Earth Sciences Library ((SESL,volume 4))

Abstract

Although on the geological time and space scales the geothermal regime of the Earth is, strictly speaking, both a transient and three dimensional phenomenon, on the global scale by far the most important component of heat transfer is radial. Furthermore, over times of the order of the thermal time constant for the crust, that is a few hundred thousand to a few million years, we consider the thermal regime to be quasi-steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames, W. F.: 1969, Numerical Methods for Partial Differential Equations, Barnes and Noble Inc., New York, 291 p.

    Google Scholar 

  • Balling, N.: 1979, ‘Subsurface Temperatures and Heat Flow Estimates in Denmark’, in V. ÄŒermak and L. Rybach (eds.), Terrestrial Heat Flow in Europe, Springer-Verlag, Berlin, 161–171.

    Google Scholar 

  • Balling, N., Kristiansen, J. I., Breiner, N., Poulsen, K. D., Rasmussen, R., and Saxov, S.: 1981, ‘Geothermal Measurements and Subsurface Temperature Modelling in Denmark’, Geo rifter 16, Department of Geology, Aarhus University, 172 pp.

    Google Scholar 

  • Banerjee, P. K. and Shaw, R. P.: 1982, ‘Boundary Element Formulation for Melting and Solidification Problems’, in P. K. Banerjee and R. P. Shaw (eds.), Developments in Boundary Element Methods - 2, Applied Science Publishers, London, 1–18.

    Google Scholar 

  • Bauer, M. S.: 1985, Heat Flow at the Upper Stillwater Dam Site, Uinta Mountains, Utah, M.Sc. Thesis, University of Utah, Salt Lake City, 94 p.

    Google Scholar 

  • Bauer, M. S. and Chapman, D. S.: 1986, ‘Thermal Regime at the Upper Stillwater Dam Site, Uinta Mountains, Utah: Implications for Terrain Microclimate and Structural Corrections in Heat Flow Studies’, Tectonophysics 128, 1–20.

    Google Scholar 

  • Beck, A. E.: 1977, ‘Climatically Perturbed Temperature Gradients and Their Effect on Regional and Continental Heat Flow Means’, Tectonophysics 41, 17–39.

    Google Scholar 

  • Beck, A. E., Wang, K., and Shen, P. Y.: 1985, ‘Sub-Bottom Temperature Perturbations Due to Temperature Variations at the Boundary of Inhomogeneous Lake or Oceanic Sediments’, Tectonophysics 121, 11–24.

    Google Scholar 

  • Beck, J. V. and Arnold, K. J.: 1977, Parameter Estimation in Engineering and Science, John Wiley and Sons, New York, 501 p.

    Google Scholar 

  • Beers, Y.: 1962, Introduction to the Theory of Error, Addison-Wesley, Reading, Pa., 66 p.

    Google Scholar 

  • Benfield, A. E.: 1949a, ‘A Problem of the Temperature Distribution in a Moving Medium’, Quart. Appl. Math. 6, 439–443.

    Google Scholar 

  • Benfield, A. E.: 1949b, ‘The Effect of Uplift and Denudation on Underground Temperatures’, J. Appl. Phys. 20, 66–70.

    Google Scholar 

  • Birch, F.: 1948, ‘The Effects of Pleistocene Climatic Variations upon Geothermal Gradients’, Am. J. Sci. 246, 729–760.

    Google Scholar 

  • Birch, F.: 1950, ‘Flow of Heat in the Front Range, Colorado’, Bull. Geol. Soc. Amer. 61, 567–620.

    Google Scholar 

  • Blackwell, D. D., Steele, J. L., and Brott, C. A.: 1980, ‘The Terrain Effect on Terrestrial Heat Flow’, J. Geophys. Res. 85, 4757–4772.

    Google Scholar 

  • Bodell, J. M. and Chapman, D. S.: 1982, ‘Heat Flow in the North-central Colorado Plateau’, J. Geophys. Res. 87, 2869–2884.

    Google Scholar 

  • Bodmer, Ph.: 1982, ‘Beiträge zur Geothermie der Schweiz’, Ph. D. Thesis, Eidgenössische Technische Hochschule, Zürich, 201 p.

    Google Scholar 

  • Brebbia, C. A.: 1978, The Boundary Element Method for Engineers, Pentech Press, London, 189 p.

    Google Scholar 

  • Brebbia, C. A. and Walker, S.: 1980, Boundary Element Techniques in Engineering, Butterworth & Co. Ltd., London, 210 p.

    Google Scholar 

  • Bredehoeft, J. D. and Papadopulos, I. S.: 1965, ‘Rates of Vertical Groundwater Movement Estimated from the Earth’s Thermal Profile’, Water Resour. Res. 1(2), 325–328.

    Google Scholar 

  • Bullard, E. C.: 1938, The Disturbance of the Temperature Gradient in the Earth’s Crust by Inequalities of Height’, Monthly Notices Roy. Astroy. Soc, Geophys. Suppl. 4, 360–362.

    Google Scholar 

  • Bullard, E. C.: 1939, Heat Flow in South Africa’, Proc. Roy. Soc. London A, 173, 474–502.

    Google Scholar 

  • Carslaw, H. S. and Jaeger, J. C: 1959, Conduction of Heat in Solids, Oxford Univ. Press, London, 510 p.

    Google Scholar 

  • Castoldi, L.: 1952, ‘Sulla distribuzione delia temperatura negli strati superiori della crosta terrestre’, Geofis. Pura et Appl. 23, 27–35.

    Google Scholar 

  • ÄŒermák, V.: 1971, ‘Underground Temperature and Inferred Climatic Temperature of the Last Millenium’, Palaeogeogr., Palaeoclimat., Palaeoecol. 10, 1–19.

    Google Scholar 

  • Chapman, D. S.: 1976, ‘Heat Flow and Heat Production in Zambia’, Ph.D. Thesis, University of Michigan, Ann Arbor, 94 p.

    Google Scholar 

  • Chapman, D. S. and Pollack, H. N.: 1977, ‘Heat Flow and Heat Production in Zambia: Evidence for Lithospheric Thinning in Central Africa’, Tectonophysics 41, 79–100.

    Google Scholar 

  • Chapman, D. S., Howell, J., and Sass, J. A.: 1984, ‘A Note on Drillhole Depths Required for Reliable Heat Flow Determinations’, Tectonophysics 103, 11–18.

    Google Scholar 

  • Cheng, P.: 1978, ‘Heat transfer in Geothermal Systems’, in Irvine, T. F. and Hartnett, J. F. (eds.), Geothermal Systems, Advances in Heat Transfer, Vol. 14, Academic Press, New York, 105 p.

    Google Scholar 

  • Clark, S. P.: 1957, ‘Heat Flow at Grass Valley, California’, Trans. Am. Geophys. Union. 38, 239–244.

    Google Scholar 

  • Clauser, C.: 1984, ‘A Climatic Correction on Temperature Gradients Using Surface Temperature Series of Various Periods’, Tectonophysics 103, 33–46.

    Google Scholar 

  • Courtillot, V., Ducruix, J., and LeMouel, J. L.: 1973, ‘Le prolongement d’un champ du potentiel d’un contour quelconque sur un contour horizontal: une application du la methode de Backus et Gilbert’, Ann. Geophys. 29, 361–366.

    Google Scholar 

  • Domenico, P. A. and Palciauskas, V. V.: 1973, ‘Theoretical Analysis of Forced Convective Heat Transfer in Regional Ground-Water Flow’, Geol. Soc. Am. Bull. 84, 3803–3814.

    Google Scholar 

  • Drury, M. J. and Lewis, T. J.: 1983, ‘Water Movement within Lac du Bonnet Batholith as Revealed by Detailed Thermal Studies of Three Closely-Spaced Boreholes’, Tectonophysics 95, 337–351.

    Google Scholar 

  • Drury, M. J.: 1984, ‘Perturbations to Temperature Gradients by Water Flow in Crystalline Rock Formations’, Tectonophysics 1984, 19–32.

    Google Scholar 

  • Ducruix, J., LeMouel, J. L., and Courtillot, V.: 1974a, ‘Continuation of Three Dimensional Potential Fields Measured on an Uneven Surface’, Geophys. Jour. Roy. Astr. Soc. 38, 299–314.

    Google Scholar 

  • Ducruix, J., LeMouel, J. L., and Courtillot, V.: 1974b, ‘Une methode simple d’evaluation de la correction topographique dans les problems de flux de chaleur’, Comptes Rendus Acad. Sci. Paris, Series B, 278, 841–843.

    Google Scholar 

  • Elder, J. W.: 1965, ‘Physical Processes in Geothermal Areas’, in W. H. K. Lee (ed.), Terrestrial Heat Flow, Monograph No. 8, A.G.U., Washington, 211–239.

    Google Scholar 

  • Elder, J. W.: 1967, ‘Steady Free Convection in a Porous Medium Heated from Below’, J. Fluid Mech. 27, 29–48.

    Google Scholar 

  • England, P. C.: 1978, The Effect of Erosion on Palaeoclimatic and Topographic Corrections to Heat Flow’, Earth Planet. Sci. Lett. 39, 427–434.

    Google Scholar 

  • England, P. C. and Richardson, S. W.: 1980, ‘Erosion and the Age Dependence of Continental Heat Flow’, Geophys. J. Roy. Astron. Soc. 62, 421–437.

    Google Scholar 

  • Finckh, P.: 1981, ‘Heat Flow Measurements in 17 Perialpine Lakes’, Bull. Geol. Soc. Am. 92, 452–514.

    Google Scholar 

  • Finckh, P.: 1983, ‘On the Calibration of Lacustrine Heat-Flow Density Measurements in a Borehole in Lake Zurich, Switzerland’, Zbl. Geol. Palaeont., Part 1, 102–117.

    Google Scholar 

  • Geertsma, J.: 1971, ‘Finite-Element Analysis of Shallow Temperature Anomalies’, Geophys. Prospecting 19, 662–681.

    Google Scholar 

  • Geiger, R.: 1965, The Climate Near the Ground, Harvard University Press, Cambridge, Mass., 611 p.

    Google Scholar 

  • Haenel, R.: 1970, ‘Eine neue Methode zur Bestimmung der terrestrischen Wärmestromdichte in Binnenseen’, Z. Geophys. 36, 725–742.

    Google Scholar 

  • Haenel, R., (ed.): 1980, Atlas of Subsurface Temperatures in the European Community, Hannover, Fed. Repub. Germany (Th. Schäfer), 43 plates.

    Google Scholar 

  • Haenel, R.: 1983, ‘Geothermal Investigations in the Rhenish Massif’, in K. Fuchs, K. von Gehlen, H. Mälzer, H. Murawski, and A. Semmel (eds.), Plateau Uplift, Springer-Verlag, Berlin, 228–246.

    Google Scholar 

  • Haji-Sheikh, A. and Sparrow, E. M.: 1967, ‘The Solution of Heat Conduction Problems by Probability Methods’, Jour. Heat Transfer, Trans. Am. Soc. Mech. Eng. 89, Ser. C., 121–131.

    Google Scholar 

  • Henderson, R. G. and Cordell, L.: 1971, ‘Reduction of Unevenly Spaced Potential Field Data to a Horizontal Plane by Means of Finite Harmonic Series’, Geophys. 36, 856–866.

    Google Scholar 

  • Henry, S. G. and Pollack, H. N.: 1985, ‘Heat Flow in the Presence of Topography: Numerical Analysis of Data Ensembles’, Geophysics 50, 1335–1341.

    Google Scholar 

  • Hotchkiss, W. O. and Ingersoll, L. R.: 1934, ‘Postglacial Time Calculations from Recent Geothermal Measurements in the Calumet Copper Mines’, J. Geol. 42 , 113–122.

    Google Scholar 

  • Huestis, S. P. and Parker, R. L.: 1979, ‘Upward and Downward Continuation as Inverse Problems’, Geophys. J. Roy. Astron. Soc. 57, 171–188.

    Google Scholar 

  • Jaeger, J. C.: 1965, ‘Application of the Theory of Heat Conduction to Geothermal Measurements’, in W. H. K. Lee (ed.), Terrestrial Heat Flow., Geophys. Monographs 8, Am. Geophys. Union, Washington, D.C., pp. 7–23.

    Google Scholar 

  • Jaeger, J. C. and Sass, J. H.: 1963, ‘Lee’s Topographic Correction in Heat Flow and the Geothermal Flux in Tasmania’, Geofis. Pura et Appl. 54, 53–63.

    Google Scholar 

  • Jaswon, M. A. and Symm, G. T.: 1977, Integral Equation Methods in Potential Theory and Elastostatics, Academic Press, London, 287 p.

    Google Scholar 

  • Jeffreys, H.: 1938, The Disturbance of the Temperature Gradient in the Earth’s Crust by Inequalities of Height’, Monthly Notices Roy. Astron. Soc., Geophys. Suppl. 4, 309–312.

    Google Scholar 

  • Jessop, A. M.: 1971, The Distribution of Glacial Perturbation of Heat Flow in Canada’, Can. Journ. Earth Sci. 8, 162–166.

    Google Scholar 

  • Jobert, G.: 1960, ‘Perturbation du flux de chaleur dans la croute terrestre due au relief’, Comptes Rendus Acad. Sci., Paris 250, 3209–3210.

    Google Scholar 

  • Kappelmeyer, O. and Haenel, R.: 1974, Geothermics, with Special Reference to Application, Gebrüder Borntraeger, Berlin, 238 p.

    Google Scholar 

  • Lachenbruch, A. H.: 1957a, Thermal Effects of the Ocean on Permafrost’, Bull. Geol. Soc. Am. 68, 1515–1529.

    Google Scholar 

  • Lachenbruch, A. H.: 1957b, Three-Dimensional Heat Conduction in Permafrost Beneath Heated Buildings, U.S. Geol. Surv. Bull. 1052-B, 51–69.

    Google Scholar 

  • Lachenbruch, A.H.: 1959, Periodic Heat Flow in a Stratified Medium with Applications to Permafrost Problems, U.S. Geol. Surv. Bull. 1083-A, 36 p.

    Google Scholar 

  • Lachenbruch, A. H.: 1968, ‘Rapid Estimation of the Topographic Disturbance to Superficial Thermal Gradients’, Rev. Geophys. and Space Phys. 6, 365–400.

    Google Scholar 

  • Lachenbruch, A. H.: 1969, The Effect of Two Dimensional Topography on Superficial Thermal Gradients, U.S. Geol. Surv. Bull. 1203-E, 86 p.

    Google Scholar 

  • Lachenbruch, A. H.: 1982, ‘Permafrost, Heat Flow, and the Geothermal Regime at Prudhoe Bay, Alaska’, J. Geophys. Res. 87, B11, 9301–9316.

    Google Scholar 

  • Langseth, M. G., Keihm, S. J., and Peters, K.: 1976, ‘Revised Lunar Heat Flow Values’, Proc. 7th Lunar Sci. Conf. 3143–3171.

    Google Scholar 

  • Lapwood, E. R.: 1948, ‘Convection of a Fluid in a Porous Medium’, Proc. Camb. Phil. Soc. 44, 508–521.

    Google Scholar 

  • Lee, T. C.: 1977, Application of Finite Element Analysis to Terrestrial Heat Flow, Inst. of Geophys. and Planet. Phys., Univ. of California, Riverside, IGPP Rept. No. UCR/GPP-77/15, 64 p.

    Google Scholar 

  • Lee, T.-C. and Henyey, T. L.: 1974, ‘Heat Flow Refraction across Dissimilar Media’, Geophys. J. Roy. Astron. Soc. 39, 319–333.

    Google Scholar 

  • Lees, C. H.: 1910, ‘On the Shapes of Isogeotherms under Mountain Ranges in Radioactive Districts’, Proc. Roy. Soc., London, Series A 83, 339–346.

    Google Scholar 

  • Livesley, R. K.: 1983, Finite Elements: An Introduction for Engineers, Cambridge University Press, Cambridge, 199 p.

    Google Scholar 

  • Mansure, A. J. and Reiter, M.: 1979, ‘A Vertical Groundwater Movement Correction for Heat Flow’, J. Geophys. Res. 84, 3490–3496.

    Google Scholar 

  • Matsubayashi, O.: 1983, ‘Application of Boundary Element Technique to Evaluation of Topographic Effect on Heat Flow Observation’, J. Geothermal Res. Soc, Japan 5, 249–257.

    Google Scholar 

  • Misener, A. D. and Beck, A. E.: 1960, ‘The Measurement of Heat Flow over Land’, in S. K. Runcorn (ed.), Methods and Techniques in Geophysics, Interscience, N.Y., 10–61.

    Google Scholar 

  • Mitchell, A. R. and Griffiths, D. F.: 1980, The Finite Difference Method in Partial Differential Equations, John Wiley and Sons, Chichester, 457 p.

    Google Scholar 

  • Mundry, E.: 1974, ‘Harmonic Temperature Waves in a Horizontally Layered Medium’, J. Geophys. 40, 767–773.

    Google Scholar 

  • Nakamura, S.: 1977, Computational Methods in Engineering and Science, with Applications to Fluid Dynamics and Nuclear Systems, John Wiley and Sons, New York, 457 p.

    Google Scholar 

  • Nielsen, S. B. and Balling, N.: 1985, ‘Transient Heat Flow in a Stratified Medium’, Tectonophysics 121, 1–10.

    Google Scholar 

  • Nielsen, S. B.: 1986, ‘The Continuous Temperature Log: Principles and Applications’, Ph.D. Thesis, University of Western Ontario, London, Canada.

    Google Scholar 

  • Parker, R. L. and Klitgord, K. D.: 1972, ‘Magnetic Upward Continuation from an Uneven Track’, Geophys. 37, 662–668.

    Google Scholar 

  • Roy, R. F., Decker, E. R., Blackwell, D. D., and Birch, F.: 1968, ‘Heat Flow in the United States’, J. Geophys. Res. 72, 5207–5221.

    Google Scholar 

  • Sass, J. H., Lachenbruch, A. H. and Jessop, A. M.: 1971a, ‘Uniform Heat Flow in a Deep Hole in the Canadian Shield and its Paleoclimatic Implications’, J. Geophys. Res. 76, 8586–8596.

    Google Scholar 

  • Sass, J. H., Lachenbruch, A. H., Munroe, R. J., Green, G. W., and Moses, T. H.: 1971b, ‘Heat Flow in the Western United States’, J. Geophys. Res. 76, 6376–6413.

    Google Scholar 

  • Sclater, J. G., Jones, E. J. W., and Miller, S. P.: 1970, ‘The Relationship of Heat Flow, Bottom Topography, and Basement Relief in Peake and Freen Deeps, Northeast Atlantic’, Tectonophysics 10, 283–300.

    Google Scholar 

  • Sclater, J. G., Crowe, J., and Anderson, R. N.: 1976, ‘On the Reliability of Oceanic Heat Flow Average’, J. Geophys. Res. 81, 2997–3006.

    Google Scholar 

  • Sheriff, R. E.: 1973, Encyclopedic Dictionary of Exploration Geophysics, Society of Exploration Geophysicists, Tulsa, 266 p.

    Google Scholar 

  • Smith, L. and Chapman, D. S.: 1983, ‘On the Thermal Effects of Groundwater Flow, 1. Regional Scale Systems’, J. Geophys. Res. 88, 593–608.

    Google Scholar 

  • Smith, M. W.: 1975, ‘Microclimatic Influences on Ground Temperatures and Permafrost Distribution, Mackenzie Delta, Northwest Territories’, Can. J. Earth Sci. 12, 1421–1438.

    Google Scholar 

  • Straus, J. M.: 1974, ‘Large Amplitude Convection in Porous Media’, J. Fluid Mech. 64, 51–63.

    Google Scholar 

  • Straus, J. M. and Schubert, G.: 1977, ‘Thermal Convection in a Porous Medium: Effects of Temperature- and Pressure-Dependent Thermodynamic and Transport Properties’, J. Geophys. Res. 82, 325–333.

    Google Scholar 

  • Tarantola, A. and Valette, B.: 1982a, ‘Generalized Non-Linear Inverse Problems Solved Using Least Square Criterion’, Rev. Geophys. Space Phys. 20, 191–232.

    Google Scholar 

  • Tarantola, A. and Valette, B.: 1982b, ‘Inverse Problem = Quest for Information’, J. Geophys. 50, 159–170.

    Google Scholar 

  • Turcotte, D. L. and Schubert, G.: 1982, Geodynamics, Applications of Continuum Physics to Geological Problems, John Wiley and Sons, New York, 450 p.

    Google Scholar 

  • Van Rooy, D.: 1982, Forward Geothermal Modelling Using the Finite Element Method, Specialeop-gave, Laboratoriet for Geofysik, Aarhus Univ., Aarhus, 88 p.

    Google Scholar 

  • Vasseur, G., Bernard, Ph., Van de Meulebrouck, J., Kast, Y., and Jolivet, J.: 1983, ‘Holocene Paleotemperatures Deduced from Geothermal Measurements’, Palaeogeogr., Palaeoclimat., Palaeoecol. 43, 237–259.

    Google Scholar 

  • Von Herzen, R. P., Finckh, P., and Hsu, K. J.: 1974, ‘Heat Flow Measurements in Swiss Lakes’, J. Geophys. 40, 141–172.

    Google Scholar 

  • Wang, K. and Beck, A. E.: 1987, ‘Heat Flow Measurement in Lacustrine or Oceanic Sediments Without Recording Bottom Temperature Variations’, J. Geophys. Res. (In press).

    Google Scholar 

  • Wang, K., Shen, P. Y., and Beck, A. E.: 1986, The Effects of Thermal Properties Structure and Water Bottom Temperature Variation on Temperature Gradients in Lake Sediments’, Can. J. Earth Sci. 23, 1257–1264.

    Google Scholar 

  • Wooding, R. A.: 1957, ‘Steady-State Free Thermal Convection of Liquid in a Saturated Permeable Medium’, J. Fluid Mech. 2, 273–285.

    Google Scholar 

  • Woodhouse, J. H. and Birch, F.: 1980, ‘Comment on ’Erosion, Uplift, Exponential Heat Source Distribution, and Transient Heat Flux’, by T.-C. Lee. J. Geophys. Res. 85, 2692–2693.

    Google Scholar 

  • Zienkiewicz, O. C: 1977, The Finite Element Method, McGraw-Hill Book Co., New York, 524 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Powell, W.G., Chapman, D.S., Balling, N., Beck, A.E. (1988). Continental Heat-Flow Density. In: Haenel, R., Rybach, L., Stegena, L. (eds) Handbook of Terrestrial Heat-Flow Density Determination. Solid Earth Sciences Library, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2847-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2847-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7780-4

  • Online ISBN: 978-94-009-2847-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics