Skip to main content
Log in

Exploring the deep South China Sea: Retrospects and prospects

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Rapid developments of deep-sea researches in China over the past 20 years have promoted the South China Sea (SCS) into the international deep-sea frontiers. The “three deep technologies”, namely scientific drilling, long-term seafloor observation and deep submersible vehicles implemented successively in SCS studies helped to achieve a number of scientific breakthroughs. Over the 20 years, five international ocean drilling expeditions to the SCS recovered nearly 10 km of sediment cores from sites at 3–4 km water depths, and drilling into the magmatic basement at 6 sites shed light on the genesis of the SCS basin. Coupled with other deep-sea short core sediments from the SCS, these records demonstrate evidence that water and carbon cycling in the low latitude regions can directly respond to the orbital forcing, and subsequently nurture a new concept of low-latitude forcing of climate changes, which challenges the classical wisdom of the overwhelming role played by the Arctic ice-sheet in climate changes. The exploration in the continent-ocean transition zone also reveals a number of specific features that characterize the SCS as a marginal basin formed at the subduction zone in the Western Pacific. The features include active magmatism and rapid rupture of lithosphere through the basin formation process, and imply that “the SCS is not a mini-Atlantic” as they can be distinguished as “plate-edge rifting” and “inner-plate rifting” respectively, thus challenging the universality of the Atlantic model for passive margins. Many more discoveries can be assembled from long-term mooring observations and deep diving cruises in the deep SCS, such as the cyclonic nature of the deep-water circulation, deep-water sediment transport by contour currents and turbidites, manganese nodules, extinct hydrothermal vents, and cold-water coral forests. In addition, prominent progress achieved in microbiology and biogeochemistry includes the microbial carbon pump and the coupling of carbon and nitrogen cycles. Clearly, most achievements of the deep-sea explorations in the SCS over the last 20 years have always been of international scale and impact. However, the contributions from Chinese scientists are most prominent, particularly with the research activities undertaken from the major program “Deep Sea Processes and Evolution of the South China Sea (2011–2018)” supported by the National Natural Science Foundation of China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beaufort L, de Garidel-Thoron T, Mix A C, Pisias N G. 2001. ENSO-like forcing on oceanic primary production during the late Pleistocene. Science, 293: 2440–2444

    Article  Google Scholar 

  • Briais A, Patriat P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. J Geophys Res, 98: 6299–6328

    Article  Google Scholar 

  • Brune S, Williams S E, Müller R D. 2017. Potential links between continental rifting, CO2 degassing and climate change through time. Nat Geosci, 10: 941–946

    Article  Google Scholar 

  • Cheng H, Edwards R L, Sinha A, Spötl C, Yi L, Chen S, Kelly M, Kathayat G, Wang X F, Li X L, Kong X G, Wang Y J, Ning Y F, Zhang H W. 2016. The Asian monsoon over the past 640000 years and ice age terminations. Nature, 534: 640–646

    Article  Google Scholar 

  • Childress L, the Expedition 368X Scientists. 2019. Expedition 368X Preliminary Report: South China Sea Rifted Margin. International Ocean Discovery Program

  • China Geological Survey. 2000. Choronicle of Marine Geological Survey in China (1949–1999) (in Chinese). Beijing: China Ocean Press. 259

    Google Scholar 

  • CLIMAP Project. 1976. The surface of the ice-age Earth. Science, 191: 1131–1137

    Article  Google Scholar 

  • Dai M H, Cao Z M, Guo X H, Zhai W D, Liu Z Y, Yin Z Q, Xu Y P, Gan J P, Hu J Y, Du C J. 2013. Why are some marginal seas sources of atmospheric CO2? Geophys Res Lett, 40: 2154–2158

    Article  Google Scholar 

  • Dang H, Jian Z, Kissel C, Bassinot F. 2015. Precessional changes in the western equatorial Pacific Hydroclimate: A 240 kyr marine record from the Halmahera Sea, East Indonesia. Geochem Geophys Geosyst, 16: 148–164

    Article  Google Scholar 

  • Ding Z L. 2018. Twenty years of ocean drilling in China (in Chinese). Chin Sci Bull, 63: 3866–3867

    Article  Google Scholar 

  • Du C, Liu Z, Kao S J, Dai M. 2017. Diapycnal fluxes of nutrients in an oligotrophic oceanic regime: The South China Sea. Geophys Res Lett, 44: 11,510–11,518

    Article  Google Scholar 

  • Guangzhou Marine Geological Survey. 2015. Atlas of Geology and Geophysics of the South China Sea (1:2000000) (in Chinese with English abstract). Tianjin: China Navigation Publications Press

    Google Scholar 

  • Hall R. 1996. Reconstructing Cenozoic SE Asia. Geol Soc Lond Spec Publ, 106: 153–184

    Article  Google Scholar 

  • Herbert T D. 1997. A long marine history of carbon cycle modulation by orbital-climatic changes. Proc Natl Acad Sci USA, 94: 8362–8369

    Article  Google Scholar 

  • Huang C Y, Wang P X, Yu M M, You C F, Liu C S, Zhao X X, Shao L, Yumul G P Jr. 2019. Potential role of strike-slip faults in opening up of the South China Sea. Natl Sci Rev, doi: https://doi.org/10.1093/nsr/nwz119

  • Huismans R, Beaumont C. 2011. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature, 473: 74–78

    Article  Google Scholar 

  • IODP-China. 2018. Fifty Years of Ocean Drilling (in Chinese). Shanghai: Tongji University Press. 396

    Google Scholar 

  • Imbrie J, Berger A, Boyle E A, Clemens S C, Duffy A, Howard W R, Kukla G, Kutzbach J, Martinson D G, McIntyre A, Mix A C, Molfino B, Morley J J, Peterson L C, Pisias N G, Prell W L, Raymo M E, Shackleton N J, Toggweiler J R. 1993. On the structure and origin of major glaciation cycles 2. The 100000-year cycle. Paleoceanography, 8: 699–735

    Article  Google Scholar 

  • Jia G, Peng P, Zhao Q, Jian Z. 2003. Changes in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China Sea. Geology, 31: 1093–1096

    Article  Google Scholar 

  • Jian Z. 2018. Towards the scientific frontier of deep-sea research—Progress of China’s participation in ocean drilling. Chin Sci Bull, 63: 3877–3882

    Article  Google Scholar 

  • Jian Z M, Yu Y, Li B, Wang J, Zhang X, Zhou Z. 2006. Phased evolution of the south-north hydrographic gradient in the South China Sea since the middle Miocene. Palaeogeogr Palaeoclimatol Palaeoecol, 230: 251–263

    Article  Google Scholar 

  • Jian Z M, Jin H Y, Kaminski M A, Ferreira F, Li B H, Yu P S. 2019. Discovery of the marine Eocene in the northern South China Sea. Natl Sci Rev, doi: https://doi.org/10.1093/nsr/nwz084

  • Jiao N, Tang K, Cai H, Mao Y. 2011. Increasing the microbial carbon sink in the sea by reducing chemical fertilization on the land. Nat Rev Microbiol, 9: 75

    Article  Google Scholar 

  • Jiao N, Cai R, Zheng Q, Tang K, Liu J, Jiao F, Wallace D, Chen F, Li C, Amann R, Benner R, Azam F. 2018. Unveiling the enigma of refractory carbon in the ocean. Natl Sci Rev, 5: 459–463

    Article  Google Scholar 

  • Karig D E. 1971. Origin and development of marginal basins in the Western Pacific. J Geophys Res, 76: 2542–2561

    Article  Google Scholar 

  • Komiya T, Maruyama S. 2007. A very hydrous mantle under the western Pacific region: Implications for formation of marginal basins and style of Archean plate tectonics. Gondwana Res, 11: 132–147

    Article  Google Scholar 

  • Kopf A, Camerlenghi A, Canals M, Ferdelman T, Mevel C, Pälike H, Roest W, Ask M, Barker-Jørgensen B, Boetius A, De Santis A, Früh-Green G, Lykousis V, McKenzie J, Mienert J, Parkes J, Schneider R, Weaver P. 2012 The Deep Sea and Sub-Seafloor Frontier. Germany: European Commission. 1–57

    Google Scholar 

  • Larsen H C, Mohn G, Nirrengarten M, Sun Z, Stock J, Jian Z, Klaus A, Alvarez-Zarikian C A, Boaga J, Bowden S A, Briais A, Chen Y, Cukur D, Dadd K, Ding W, Dorais M, Ferré E C, Ferreira F, Furusawa A, Gewecke A, Hinojosa J, Höfig T W, Hsiung K H, Huang B, Huang E, Huang X L, Jiang S, Jin H, Johnson B G, Kurzawski R M, Lei C, Li B, Li L, Li Y, Lin J, Liu C, Liu C, Liu Z, Luna A J, Lupi C, McCarthy A, Ningthoujam L, Osono N, Peate D W, Persaud P, Qiu N, Robinson C, Satolli S, Sauermilch I, Schindlbeck J C, Skinner S, Straub S, Su X, Su C, Tian L, van der Zwan F M, Wan S, Wu H, Xiang R, Yadav R, Yi L, Yu P S, Zhang C, Zhang J, Zhang Y, Zhao N, Zhong G, Zhong L. 2018. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nat Geosci, 11: 782–789

    Article  Google Scholar 

  • Li B, Wang J, Huang B, Li Q, Jian Z, Zhao Q, Su X, Wang P. 2004. South China Sea surface water evolution over the last 12 Myr: A south-north comparison from Ocean Drilling Program Sites 1143 and 1146. Paleoceanography, 19: PA1009

    Google Scholar 

  • Li C F, Xu X, Lin J, Sun Z, Zhu J, Yao Y, Zhao X, Liu Q, Kulhanek D K, Wang J, Song T, Zhao J, Qiu N, Guan Y, Zhou Z, Williams T, Bao R, Briais A, Brown E A, Chen Y, Clift P D, Colwell F S, Dadd K A, Ding W, Almeida I H, Huang X L, Hyun S, Jiang T, Koppers A A P, Li Q, Liu C, Liu Z, Nagai R H, Peleo-Alampay A, Su X, Tejada M L G, Trinh H S, Yeh Y C, Zhang C, Zhang F, Zhang G L. 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochem Geophys Geosyst, 15: 4958–4983

    Article  Google Scholar 

  • Li C F, Lin J, Kulhanek D K, the Expedition 349 Scientists. 2015. South China Sea Tectonics. Proceedings of the International Ocean Discovery Program (IODP). 2015.3.30, 349: 1–300

    Google Scholar 

  • Li J B, Ding W W, Wu Z Y, Zhang J, Dong C Z. 2012. The propagation of seafloor spreading in the southwestern subbasin, South China Sea. Chin Sci Bull, 57: 3182–3191

    Article  Google Scholar 

  • Lin J, Xu Y G, Sun Z, Zhou Z Y. 2019. Mantle upwelling beneath the South China Sea and links to surrounding subduction systems. Natl Sci Rev, doi: https://doi.org/10.1093/nsr/nwz123

  • Liu Z F, Ma P F, Wu J W. 2018. History of the ocean drilling (in Chinese). IODP-China, fifty Years of Ocean Drilling. Shanghai: Tongji University Press. 2–49

    Google Scholar 

  • Ma W, Chai F, Xiu P, Xue H J, Tian J. 2014. Simulation of export production and biological pump structure in the South China Sea. Geo-Mar Lett, 34: 541–554

    Article  Google Scholar 

  • Menard H W. 1967. Transitional types of crust under small ocean basins. J Geophys Res, 72: 3061–3073

    Article  Google Scholar 

  • Murphy J B, Nance R D. 2008. The Pangea conundrum. Geology, 36: 703–706

    Article  Google Scholar 

  • Pälike H, Norris R D, Herrle J O, Wilson P A, Coxall H K, Lear C H, Shackleton N J, Tripati A K, Wade B S. 2006. The heartbeat of the Oligocene climate system. Science, 314: 1894–1898

    Article  Google Scholar 

  • Pierrehumbert R T. 2002. The hydrologic cycle in deep-time climate problems. Nature, 419: 191–198

    Article  Google Scholar 

  • Ruan A, Wei X, Niu X, Zhang J, Dong C, Wu Z, Wang X. 2016. Crustal structure and fracture zone in the Central Basin of the South China Sea from wide angle seismic experiments using OBS. Tectonophysics, 688: 1–10

    Article  Google Scholar 

  • Shu Y, Xue H, Wang D, Xie Q, Chen J, Li J, Chen R, He Y, Li D. 2016. Observed evidence of the anomalous South China Sea western boundary current during the summers of 2010 and 2011. J Geophys Res-Oceans, 121: 1145–1159

    Article  Google Scholar 

  • Sun X, Luo Y, Huang F, Tian J, Wang P. 2003. Deep-sea pollen from the South China Sea: Pleistocene indicators of East Asian monsoon. Mar Geol, 201: 97–118

    Article  Google Scholar 

  • Sun Z, Lin J, Qiu N, Jian Z M, Wang P X, Pang X, Zheng J Y, Zhu B D. 2019. The role of magmatism in thinning and breakup of the South China Sea continental margin? Natl Sci Rev, doi: https://doi.org/10.1093/nsr/nwz116

  • Sun Z, Jian Z, Stock J M, Larsen H C, Klaus A, Alvarez Zarikian C A, the Expedition 367/368 Scientists. 2018. South China Sea Rifted Margin. In: Proceedings of the International Ocean Discovery Program. 367/368. College Station, TX (IODP)

  • Sun Z, Stock J, Jian Z, McIntosh K, Alvarez-Zarikian C A, Klaus A. 2016. Expedition 367/368 Scientific Prospectus: South China Sea Rifted Margin. International Ocean Discovery Program

  • Tamaki K, Honza E. 1991. Global tectonics and formation of marginal basins: Role of the western Pacific. Episodes, 14: 224–230

    Article  Google Scholar 

  • Tapponnier P, Peltzer G, Le Dain A Y, Armijo R, Cobbold P. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10: 611–616

    Article  Google Scholar 

  • Taylor B, Karner G D. 1983. On the evolution of marginal basins. Rev Geophys, 21: 1727–1741

    Article  Google Scholar 

  • Tian J, Pak D K, Wang P, Lea D, Cheng X, Zhao Q. 2006. Late Pliocene monsoon linkage in the tropical South China Sea. Earth Planet Sci Lett, 252: 72–81

    Article  Google Scholar 

  • Tian J, Wang P, Cheng X. 2004. Development of the East Asian monsoon and Northern Hemisphere glaciation: Oxygen isotope records from the South China Sea. Quat Sci Rev, 23: 2007–2016

    Article  Google Scholar 

  • Tian J, Ma W T, Lyle M W, Shackford J K. 2014. Synchronous mid-Miocene upper and deep oceanic δ 13C changes in the east equatorial Pacific linked to ocean cooling and ice sheet expansion. Earth Planet Sci Lett, 406: 72–80

    Article  Google Scholar 

  • Tian J W, Qu T D. 2012. Advances in research on the deep South China Sea circulation. Chin Sci Bull, 57: 3115–3120

    Article  Google Scholar 

  • Wan S M, Li A C, Clift P D, Jiang H Y. 2006. Development of the East Asian summer monsoon: Evidence from the sediment record in the South China Sea since 8.5 Ma. Palaeogeogr Palaeoclimatol Palaeoecol, 241: 139–159

    Article  Google Scholar 

  • Wan S M, Li A C, Clift P D, Stuut J B W. 2007. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 561–582

    Article  Google Scholar 

  • Wan X S, Sheng H X, Dai M, Zhang Y, Shi D, Trull T W, Zhu Y, Lomas M W, Kao S J. 2018. Ambient nitrate switches the ammonium consumption pathway in the euphotic ocean. Nat Commun, 9: 915

    Article  Google Scholar 

  • Wang P X. 2012. Tracing the life history of a marginal sea—On “The South China Sea Deep” Research Program. Chin Sci Bull, 57: 3093–3114

    Article  Google Scholar 

  • Wang P, Zhao Q, Jian Z, Cheng X, Huang W, Tian J, Wang J, Li Q, Li B, Su X. 2003. Thirty million year deep sea records in the South China Sea. Chin Sci Bull, 48: 2524–2535

    Article  Google Scholar 

  • Wang P X, Huang C Y, Lin J, Jian Z M, Sun Z, Zhao M H. 2019. The South China Sea is not a mini-Atlantic—Plate-edge rifting vs intra-plate rifting. Natl Sci Rev, doi: https://doi.org/10.1093/nsr/nwz135

  • Wang P X, Li Q, Tian J, He J, Jian Z, Ma W, Dang H. 2016. Monsoon influence on planktic δ 18O records from the South China Sea. Quat Sci Rev, 142: 26–39

    Article  Google Scholar 

  • Wang P X, Li Q Y, Tian J, Jian Z M, Liu C L, Li L, Ma W T. 2014b. Long-term cycles in the carbon reservoir of the Quaternary ocean: A perspective from the South China Sea. Natl Sci Rev, 1: 119–143

    Article  Google Scholar 

  • Wang P, Li Q, Tian J. 2014a. Pleistocene paleoceanography of the South China Sea: Progress over the past 20 years. Mar Geol, 352: 381–396

    Article  Google Scholar 

  • Wang P X, Min Q B, Bain Y H, Feng W K. 1986. Planktonic foraminifera in the continental slope of the northern South China Sea during the last 130000 years and their paleo-oceanographic implications. Acta Geol Sin, 60: 1–11

    Google Scholar 

  • Wang P X, Prell W, Blum P, et al. 2000. Proceeding, Ocean Drilling Program, Initial Reports, 184. ODP, Texas A&M, College Station, USA

    Google Scholar 

  • Wang P X, Tian J, Cheng X, Liu C, Xu J. 2004. Major Pleistocene stages in a carbon perspective: The South China Sea record and its global comparison. Paleoceanography, 19: PA4005

    Article  Google Scholar 

  • Wang P X, Tian J, Cheng X, Liu C, Xu J. 2003. Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology, 31: 239–242

    Article  Google Scholar 

  • Wang P X, Tian J, Lourens L J. 2010. Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records. Earth Planet Sci Lett, 290: 319–330

    Article  Google Scholar 

  • Wang P X, Wang B, Cheng H, Fasullo J, Guo Z T, Kiefer T, Liu Z Y. 2017. The global monsoon across time scales: Mechanisms and outstanding issues. Earth-Sci Rev, 174: 84–121

    Article  Google Scholar 

  • Webster P J. 1994. The role of hydrological processes in ocean-atmosphere interactions. Rev Geophys, 32: 427–476

    Article  Google Scholar 

  • Wei G, Li X H, Liu Y, Shao L, Liang X. 2006. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea. Paleoceanography, 21: PA4214

    Article  Google Scholar 

  • Wu J, Suppe J, Lu R, Kanda R. 2016. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods. J Geophys Res-Solid Earth, 121: 4670–4741

    Article  Google Scholar 

  • Yao B C, Zeng W J, Chen Y Z, Zheng X L, Hayes D E, Diebold J, Buhl P, Spangler S. 1994. The crustal structure in the eastern part of the northern margin of the South China Sea (in Chinese with English abstract). Acta Geophys Sin, 37: 27–35

    Google Scholar 

  • Xia S, Zhao D, Sun J, Huang H. 2016. Teleseismic imaging of the mantle beneath southernmost China: New insights into the Hainan plume. Gondwana Res, 36: 46–56

    Article  Google Scholar 

  • Zhai W D, Dai M H, Chen B S, Guo X H, Li Q, Shang S L, Zhang C Y, Cai W J, Wang D X. 2013. Seasonal variations of sea-air CO2 fluxes in the largest tropical marginal sea (South China Sea) based on multiple-year underway measurements. Biogeosciences, 10: 7775–7791

    Article  Google Scholar 

  • Zhang Y, Liu Z, Zhao Y, Colin C, Zhang X, Wang M, Zhao S, Kneller B. 2018. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea. Geology, 46: 675–678

    Article  Google Scholar 

  • Zhang Y, Liu Z, Zhao Y, Li J, Liang X. 2015. Effect of surface mesoscale eddies on deep-sea currents and mixing in the northeastern South China Sea. Deep-Sea Res Part II-Top Stud Oceanogr, 122: 6–14

    Article  Google Scholar 

  • Zhao M H, Sibuet J C, Wu J. 2019. The South China Sea and Philippine Sea plate intermingled fates. Natl Sci Rev, doi: https://doi.org/10.1093/nsr/nwz107

  • Zhao X H, Zhou C, Zhao W, Tian J, Xu X. 2016. Deepwater overflow observed by three bottom-anchored moorings in the Bashi Channel. Deep-Sea Res Part I-Oceanogr Res Pap, 110: 65–74

    Article  Google Scholar 

  • Zhao Y, Liu Z, Zhang Y, Li J, Wang M, Wang W, Xu J. 2015. In situ observation of contour currents in the northern South China Sea: Applications for deepwater sediment transport. Earth Planet Sci Lett, 430: 477–485

    Article  Google Scholar 

  • Zhao M H, He E, Sibuet J C, Sun L, Qiu X, Tan P, Wang J. 2018. Post-seafloor spreading volcanism in the central East South China Sea and its formation through an extremely thin oceanic crust. Geochem Geophys Geosyst, 19: 621–641

    Article  Google Scholar 

  • Zhou C, Zhao W, Tian J, Zhao X, Zhu Y, Yang Q, Qu T. 2017. Deep western boundary current in the South China Sea. Sci Rep, 7: 9303

    Article  Google Scholar 

  • Zhu W L, Zhong K, Li Y C, Xu Q, Fang D Y. 2012. Characteristics of hydrocarbon accumulation and exploration potential of the northern South China Sea deepwater basins. Chin Sci Bull, 57: 3121–3129

    Article  Google Scholar 

Download references

Acknowledgements

LI Qianyu is thanked for improving the English text. This work was supported by the National Natural Science Foundation of China (Grant No. 91128000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinxian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Jian, Z. Exploring the deep South China Sea: Retrospects and prospects. Sci. China Earth Sci. 62, 1473–1488 (2019). https://doi.org/10.1007/s11430-019-9484-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9484-4

Keywords

Navigation