Skip to main content

Advertisement

Log in

Simulation of export production and biological pump structure in the South China Sea

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The export flux of particulate organic carbon (POC) consumes upwelled dissolved inorganic carbon (DIC), which hinders surplus CO2 being released to the atmosphere. The export flux of POC is therefore crucial to the carbon and biogeochemical cycles. This study aims to model the long-term (1958–2009) variation of export flux and structure of the biological pump in the South China Sea (SCS) using a three-dimensional physical-biogeochemical coupled (ROMS-CoSiNE) model. The modeled POC export flux in the northeastern and north central SCS is high in winter and low in summer, whereas the flux in the central, southwestern and southern SCS varies following a “W” shape: two maxima in winter and summer, and two minima in spring and autumn. The pattern follows the variation of the East Asian monsoon and is consistent with observations. On the interannual scale, export flux is anti-phased with the El Niño-Southern Oscillation such that El Niño (La Niña) conditions correspond to low (high) export flux. Modeled annual mean POC export flux reaches up to 1.95 mmol m–2 day–1, which is underestimated comparing with field observations. The f-ratio is estimated to be ~0.4. The b value of the Martin equation for POC is 1.18±0.03. Remineralization rate of POC is greater than the classical Martin equation but is consistent with its subtropical counterparts. The modeled results indicate that the SCS is a weak source of atmospheric CO2 with a flux estimated at 1.0 mmol m–2 day–1. The modeled results provide an insight of the temporal and spatial variability of the carbon cycle in this monsoon-driven, semi-enclosed basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexander MA, Blade I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Climate 15:2205–2231. doi:10.1175/1520-0442(2002)015<2205:Tabtio>2.0.Co;2

    Article  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263. doi:10.3354/meps010257

    Article  Google Scholar 

  • Baines SB, Pace ML (1991) The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol Oceanogr 36:1071–1077

    Article  Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42:1–20

    Article  Google Scholar 

  • Buesseler KO, Antia AN, Chen M, Fowler SW, Gardner WD, Gustafsson O, Harada K, Michaels AF, Rutgers van der Loeff M, Sarin M, Steinberg DK, Trull T (2007a) An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J Mar Res 65:345–416

    Article  Google Scholar 

  • Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW, Bidigare RR, Bishop JKB, Casciotti KL, Dehairs F, Elskens M, Honda M, Karl DM, Siegel DA, Silver MW, Steinberg DK, Valdes J, Van Mooy B, Wilson S (2007b) Revisiting carbon flux through the ocean’s twilight zone. Science 316:567–570. doi:10.1126/science.1137959

    Article  Google Scholar 

  • Buesseler KO, Trull TW, Steinberg DK, Silver MW, Siegel DA, Saitoh SI, Lamborg CH, Lam PJ, Karl DM, Jiao NZ, Honda MC, Elskens M, Dehairs F, Brown SL, Boyd PW, Bishop JKB, Bidigare RR (2008) VERTIGO (VERtical Transport In the Global Ocean): a study of particle sources and flux attenuation in the North Pacific. Deep-Sea Res II 55:1522–1539. doi:10.1016/j.dsr2.2008.04.024

    Article  Google Scholar 

  • Cai P, Huang Y, Chen M, Liu G, Qiu Y (2001) Export of particulate organic carbon estimated from 234Th-238U disequilibria and its temporal variation in the South China Sea. Chin Sci Bull 46:1722–1726

    Article  Google Scholar 

  • Cai P, Huang Y, Chen M, Guo L, Liu G, Qiu Y (2002) New production based on 228Ra-derived nutrient budgets and thorium-estimated POC export at the intercalibration station in the South China Sea. Deep-Sea Res I 49:53–66. doi:10.1016/S0967-0637(01)00040-1

    Article  Google Scholar 

  • Cai PH, Chen WF, Dai MH, Wan ZW, Wang DX, Li Q, Tang TT, Lv DW (2008) A high-resolution study of particle export in the southern South China Sea based on 234Th : 238U disequilibrium. J Geophys Res 113, C04019. doi:10.1029/2007JC004268

    Google Scholar 

  • Chai F, Dugdale RC, Peng TH, Wilkerson FP, Barber RT (2002) One-dimensional ecosystem model of the equatorial Pacific upwelling system. Part I: model development and silicon and nitrogen cycle. Deep-Sea Res II 49:2713–2745. doi:10.1016/s0967-0645(02)00055-3

    Article  Google Scholar 

  • Chai F, Liu G, Xue H, Shi L, Chao Y, Tseng C-M, Chou W-C, Liu K-K (2009) Seasonal and interannual variability of carbon cycle in South China Sea: a three-dimensional physical-biogeochemical modeling study. J Oceanogr 65:703–720. doi:10.1007/s10872-009-0061-5

    Article  Google Scholar 

  • Chan JCL, Zhou W (2005) PDO, ENSO and the early summer monsoon rainfall over south China. Geophys Res Lett 32, L08810. doi:10.1029/2004GL022015

    Google Scholar 

  • Chao S-Y, Shaw P-T, Wu SY (1996) Deep water ventilation in the South China Sea. Deep-Sea Res I 43:445–466. doi:10.1016/0967-0637(96)00025-8

    Article  Google Scholar 

  • Chen Y-LL (2005a) Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea. Deep-Sea Res I 52:319–340. doi:10.1016/j.dsr.2004.11.001

    Article  Google Scholar 

  • Chen J (2005b) Biogeochemistry of settling particles in the South China Sea and its significance on paleo-environment studies. In: Publication Tongji University, Shanghai

  • Chen Y-LL, Chen H-Y (2006) Seasonal dynamics of primary and new production in the northern South China Sea: the significance of river discharge and nutrient advection. Deep-Sea Res I 53:971–986. doi:10.1016/j.dsr.2006.02.005

    Article  Google Scholar 

  • Chen J, Zheng L, Wiesner MG, Chen R, Zheng Y, Wong HK (1998) Estimations of primary production and export production in the South China Sea based on sediment trap experiments. Chin Sci Bull 43:583–586. doi:10.1007/BF02883645

    Article  Google Scholar 

  • Chen C-TA, Wang S-L, Chou W-C, Sheu DD (2006) Carbonate chemistry and projected future changes in pH and CaCO3 saturation state of the South China Sea. Mar Chem 101:277–305. doi:10.1016/j.marchem.2006.01.007

    Article  Google Scholar 

  • Chen W, Cai P, Dai M, Wei J (2008) 234Th/238U disequilibrium and particulate organic carbon export in the northern South China Sea. J Oceanogr 64:417–428. doi:10.1007/s10872-008-0035-z

    Article  Google Scholar 

  • Dai M, Cao Z, Guo X, Zhai W, Liu Z, Yin Z, Xu Y, Gan J, Hu J, Du C (2013) Why are some marginal seas sources of atmospheric CO2? Geophys Res Lett 40:2154–2158. doi:10.1002/grl.50390

    Article  Google Scholar 

  • Deng W, Wei G (2014) Local origins of interdecadal Pacific variability in the tropical and North Pacific Ocean: evidence from a comparative study of coral oxygen isotope records. Geo-Mar Lett 34:345–352. doi:10.1007/s00367-014-0365-3

    Article  Google Scholar 

  • Dunne JP, Sarmiento JL, Gnanadesikan A (2007) A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem Cycles 21, GB4006. doi:10.1029/2006GB002907

    Article  Google Scholar 

  • Elskens M, Brion N, Buesseler K, Van Mooy BAS, Boyd P, Dehairs F, Savoye N, Baeyens W (2008) Primary, new and export production in the NW Pacific subarctic gyre during the vertigo K2 experiments. Deep-Sea Res II 55:1594–1604. doi:10.1016/j.dsr2.2008.04.013

    Article  Google Scholar 

  • Garcia HE, Locarnini RA, Boyer TP, Antonov JI (2006) World Ocean Atlas 2005, Volume 4: Nutrients (phosphate, nitrate, silicate). In: Levitus S (ed) NOAA Atlas NESDIS 64. US Government Printing Office, Washington, DC, p 398

    Google Scholar 

  • Hansell DA, Carlson CA, Repeta DJ, Schlitzer R (2009) Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22:202–211. doi:10.5670/oceanog.2009.109

    Article  Google Scholar 

  • Helmke P, Neuer S, Lomas MW, Conte M, Freudenthal T (2010) Cross-basin differences in particulate organic carbon export and flux attenuation in the subtropical North Atlantic gyre. Deep-Sea Res I 57:213–227. doi:10.1016/j.dsr.2009.11.001

    Article  Google Scholar 

  • Ho T-Y, Chou W-C, Wei C-L, Lin F-J, Wong GTF, Lin H-L (2010) Trace metal cycling in the surface water of the South China Sea: vertical fluxes, composition, and sources. Limnol Oceanogr 55:1807–1820. doi:10.4319/lo.2010.55.5.1807

    Article  Google Scholar 

  • Hung J-J, Wang S-M, Chen Y-L (2007) Biogeochemical controls on distributions and fluxes of dissolved and particulate organic carbon in the Northern South China Sea. Deep-Sea Res II 54:1486–1503. doi:10.1016/j.dsr2.2007.05.006

    Article  Google Scholar 

  • Jennerjahn TC, Liebezeit G, Kempe S, Xu L, Chen W, Wong HK (1992) Particle flux in the northern South China Sea. In: Kudrass HR, Pautot G (eds) Marine geology and geophysics of the South China Sea. China Ocean Press, Beijing, pp 228–235

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Karl DM, Hebel DV, Bjorkman K, Letelier RM (1998) The role of dissolved organic matter release in the productivity of the oligotrophic North Pacific Ocean. Limnol Oceanogr 43:1270–1286

    Article  Google Scholar 

  • Kuo N-J, Zheng Q, Ho C-R (2000) Satellite observation of upwelling along the western coast of the South China Sea. Remote Sens Environ 74:463–470. doi:10.1016/s0034-4257(00)00138-3

    Article  Google Scholar 

  • Lan J, Wang Y, Bao Y (2012) Response of the South China Sea upper layer circulation to monsoon anomalies during 1997/1998 El Nino event. Aquat Ecosyst Health Manage 15:6–13

    Article  Google Scholar 

  • Laws EA, Falkowski PG, Smith WO, Ducklow H, McCarthy JJ (2000) Temperature effects on export production in the open ocean. Global Biogeochem Cycles 14:1231–1246. doi:10.1029/1999GB001229

    Article  Google Scholar 

  • Li W, Wang R, Chen J, He Y, Chen M, Huang W, Chen R (2008) Correlation of surface sediments with sinking particulate matters in the South China Sea and implication for reconstructing paleoenvironment (in Chinese with English abstract). Mar Geol Quat Geol 28:73–83

    Google Scholar 

  • Liu G, Chai F (2009) Seasonal and interannual variability of primary and export production in the South China Sea: a three-dimensional physical–biogeochemical model study. ICES J Mar Sci 66:420–431. doi:10.1093/icesjms/fsn219

    Article  Google Scholar 

  • Liu K-K, Chao S-Y, Shaw P-T, Gong G-C, Chen C-C, Tang T-Y (2002) Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep-Sea Res I 49:1387–1412. doi:10.1016/s0967-0637(02)00035-3

    Article  Google Scholar 

  • Liu Q, Jiang X, Xie S-P, Liu WT (2004) A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: seasonal development and interannual variability. J Geophys Res 109, C07012. doi:10.1029/2003JC002179

    Google Scholar 

  • Liu K-K, Kao S-J, Hu H-C, Chou W-C, Hung G-W, Tseng C-M (2007) Carbon isotopic composition of suspended and sinking particulate organic matter in the northern South China Sea - From production to deposition. Deep-Sea Res II 54:1504–1527. doi:10.1016/j.dsr2.2007.05.010

    Article  Google Scholar 

  • Liu K-K, Wang L-W, Dai M, Tseng C-M, Yang Y, Sui C-H, Oey L, Tseng K-Y, Huang S-M (2013) Inter-annual variation of chlorophyll in the northern South China Sea observed at the SEATS Station and its asymmetric responses to climate oscillation. Biogeosciences 10:7449–7462. doi:10.5194/bg-10-7449-2013

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2006) World ocean atlas 2005, Volume 1: Temperature. In: Levitus S (ed) NOAA Atlas NESDIS 61. US Government Printing Office, Washington, DC

    Google Scholar 

  • Ma H, Zeng Z, He J, Chen L, Yin M, Zeng S, Zeng W (2008) Vertical flux of particulate organic carbon in the central South China Sea estimated from 234Th-238U disequilibria. Chin J Oceanol Limnol 26:480–485. doi:10.1007/s00343-008-0480-y

    Article  Google Scholar 

  • Ma H, Zeng Z, Yu W, He J, Chen L, Cheng J, Yin M, Zeng S (2011) 234Th/238U disequilibrium and particulate organic carbon export in the northwestern South China Sea. Acta Oceanolog Sin 30:55–62. doi:10.1007/s13131-011-0119-2

    Article  Google Scholar 

  • Ma W, Chai F, Xiu P, Xue H, Tian J (2013) Modeling the long-term variability of phytoplankton functional groups and primary productivity in the South China Sea. J Oceanogr 69:527–544. doi:10.1007/s10872-013-0190-8

    Article  Google Scholar 

  • Martin JH, Knauer GA, Karl DM, Broenkow WW (1987) VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res A 34:267–285. doi:10.1016/0198-0149(87)90086-0

    Article  Google Scholar 

  • Ning X, Chai F, Xue H, Cai Y, Liu C, Shi J (2004) Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. J Geophys Res 109, C10005. doi:10.1029/2004JC002365

    Article  Google Scholar 

  • Palacz AP, Xue H, Armbrecht C, Zhang C, Chai F (2011) Seasonal and inter-annual changes in the surface chlorophyll of the South China Sea. J Geophys Res 116, C09015. doi:10.1029/2011JC007064

    Google Scholar 

  • Qu T, Girton JB, Whitehead JA (2006) Deepwater overflow through Luzon Strait. J Geophys Res 111, C01002. doi:10.1029/2005JC003139

    Google Scholar 

  • Qu T, Song YT, Yamagata T (2009) An introduction to the South China Sea throughflow: its dynamics, variability, and application for climate. Dyn Atmos Oceans 47:3–14. doi:10.1016/j.dynatmoce.2008.05.001

    Article  Google Scholar 

  • Sheu DD, Chou W-C, Wei C-L, Hou W-P, Wong GTF, Hsu C-W (2010) Influence of El Niño on the sea-to-air CO2 flux at the SEATS time-series site, northern South China Sea. J Geophys Res 115, C10021. doi:10.1029/2009JC006013

    Article  Google Scholar 

  • Su J (2004) Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Cont Shelf Res 24:1745–1760. doi:10.1016/j.csr.2004.06.005

    Article  Google Scholar 

  • Tseng C-M, Wong GTF, Lin I-I, Wu C-R, Liu K-K (2005) A unique seasonal pattern in phytoplankton biomass in low-latitude waters in the South China Sea. Geophys Res Lett 32, L08608. doi:10.1029/2004GL022111

    Google Scholar 

  • Wan S, Jian ZM, Cheng XR, Qiao PJ, Wang RJ (2010) Seasonal variations in planktonic foraminiferal flux and the chemical properties of their shells in the southern South China Sea. Sci China Earth Sci 53:1176–1187

    Article  Google Scholar 

  • Wang X, Chao Y (2004) Simulated Sea Surface Salinity variability in the tropical Pacific. Geophys Res Lett 31, L02302. doi:10.1029/2003GL018146

    Google Scholar 

  • Wang P, Li Q (2009) The South China Sea: paleoceanography and sedimentology. Springer, Dordrecht

    Book  Google Scholar 

  • Wang J, Tang D, Sui Y (2010) Winter phytoplankton bloom induced by subsurface upwelling and mixed layer entrainment southwest of Luzon Strait. J Mar Syst 83:141–149. doi:10.1016/j.jmarsys.2010.05.006

    Article  Google Scholar 

  • Wei C-L, Lin S-Y, Sheu DD-D, Chou W-C, Yi M-C, Santschi PH, Wen L-S (2011) Particle-reactive radionuclides (234Th, 210Pb, 210Po) as tracers for the estimation of export production in the South China Sea. Biogeosciences 8:3793–3808. doi:10.5194/bg-8-3793-2011

    Article  Google Scholar 

  • Wong GTF, Ku T-L, Mulholland M, Tseng C-M, Wang D-P (2007a) The SouthEast Asian Time-series Study (SEATS) and the biogeochemistry of the South China Sea—An overview. Deep-Sea Res II 54:1434–1447. doi:10.1016/j.dsr2.2007.05.012

    Article  Google Scholar 

  • Wong GTF, Tseng C-M, Wen L-S, Chung S-W (2007b) Nutrient dynamics and N-anomaly at the SEATS station. Deep-Sea Res II 54:1528–1545. doi:10.1016/j.dsr2.2007.05.011

    Article  Google Scholar 

  • Wyrtki K (1961) Physical oceanography of the southeast Asian waters. In: Naga Report, Scripps Institution of Oceangraphy, La Jolla, CA, p 195

  • Xie S-P, Xie Q, Wang D, Liu WT (2003) Summer upwelling in the South China Sea and its role in regional climate variations. J Geophys Res 108:3261. doi:10.1029/2003JC001867

    Article  Google Scholar 

  • Xie S-P, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo–Western Pacific climate during the summer following El Niño. J Climate 22:730–747

    Article  Google Scholar 

  • Xiu P, Chai F (2014) Connections between physical, optical and biogeochemical processes in the Pacific Ocean. Prog Oceanogr 122:30–53. doi:10.1016/j.pocean.2013.11.008

    Article  Google Scholar 

  • Yang WF, Huang YP, Chen M, Qiu YS, Peng AG, Zhang L (2009) Export and remineralization of POM in the Southern Ocean and the South China Sea estimated from 210Po/210Pb disequilibria. Chin Sci Bull 54:2118–2123. doi:10.1007/s11434-009-0043-4

    Article  Google Scholar 

  • Zeebe RE, Wolf-Gladrow DA (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, New York

    Google Scholar 

  • Zhai W-D, Dai M-H, Chen B-S, Guo X-H, Li Q, Shang S-L, Zhang C-Y, Cai W-J, Wang D-X (2013) Seasonal variations of sea–air CO2 fluxes in the largest tropical marginal sea (South China Sea) based on multiple-year underway measurements. Biogeosciences 10:7775–7791. doi:10.5194/bg-10-7775-2013

    Article  Google Scholar 

  • Zhao H, Tang DL (2007) Effect of 1998 El Niño on the distribution of phytoplankton in the South China Sea. J Geophys Res 112, C02017. doi:10.1029/2006JC003536

    Google Scholar 

Download references

Acknowledgements

Constructive comments from two reviewers and the editors are acknowledged. Funding for this research was provided by the NSFC (Grant No. 41206033, 91128208) and China Postdoctoral Science Foundation (2014M560350). J.T. was supported by the Shanghai Shuguang Program (11SG24) and program for New Century Excellent Talents in University (NCET-08-0401). The computation was facilitated by the University of Maine High Performance Computing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Chai, F., Xiu, P. et al. Simulation of export production and biological pump structure in the South China Sea. Geo-Mar Lett 34, 541–554 (2014). https://doi.org/10.1007/s00367-014-0384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-014-0384-0

Keywords

Navigation