Skip to main content
Log in

Water and partial melting of Earth’s mantle

  • Review
  • Special Topic: Water in the Earth’s interior
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Water plays a crucial role in the melting of Earth’s mantle. Mantle magmatisms mostly occur at plate boundaries (including subduction zones and mid-ocean ridges) and in some intraplate regions with thermal anomaly. At oceanic subduction zones, water released by the subducted slab may induce melting of the overlying mantle wedge or even the slab itself, giving rise to arc magmatism, or may evolve into a supercritical fluid. The physicochemical conditions for the formation of slab melt and supercritical fluid are still under debate. At mid-ocean ridges and intraplate hot zones, water and CO2 cause melting of the upwelling mantle to occur at greater depths and in greater extents. Low degree melting of the mantle may occur at boundaries between Earth’s internal spheres, including the lithosphere-asthenosphere boundary (LAB), the upper mantletransition zone boundary, and the transition zone-lower mantle boundary, usually attributed to contrasting water storage capacity across the boundary. The origin for the stimulating effect of water on melting lies in that water as an incompatible component has a strong tendency to be enriched in the melt (i.e., with a mineral-melt partition coefficient much smaller than unity), thereby lowering the Gibbs free energy of the melt. The partitioning of water between melt and mantle minerals such as olivine, pyroxenes and garnet has been investigated extensively, but the effects of hydration on the density and transport properties of silicate melts require further assessments by experimental and computational approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam J, Locmelis M, Afonso J C, Rushmer T, Fiorentini M L. 2014. The capacity of hydrous fluids to transport and fractionate incompatible elements and metals within the Earth’s mantle. Geochem Geophys Geosyst, 15: 2241–2253

    Article  Google Scholar 

  • Anderson D L, Sammis C. 1970. Partial melting in the upper mantle. Phys Earth Planet Inter, 3: 41–50

    Article  Google Scholar 

  • Anderson D L. 1989. Theory of the Earth. Blackwell Scientific Publications. 366

    Google Scholar 

  • Aubaud C, Hauri E H, Hirschmann M M. 2004. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys Res Lett, 31: L20611, doi: 10.1029/2004GL021341

  • Aubaud C, Hirschmann M M, Withers A C, Hervig R L. 2008. Hydrogen partitioning between melt, clinopyroxene, and garnet at 3 GPa in a hydrous MORB with 6 wt% H2O. Contrib Mineral Petrol, 156: 607–625

    Article  Google Scholar 

  • Audétat A, Keppler H. 2004. Viscosity of fluids in subduction zones. Science, 303: 513–516

    Article  Google Scholar 

  • Bell D R, Rossman G R. 1992. Water in Earth’s mantle: The role of nominally anhydrous minerals. Science, 255: 1391–1397

    Article  Google Scholar 

  • Beran A, Libowitzky E. 2006. Water in natural mantle minerals II: Olivine, garnet and accessory minerals. Rev Mineral Geochem, 62: 169–191

    Article  Google Scholar 

  • Bercovici D, Karato S I. 2003. Whole-mantle convection and the transition- zone water filter. Nature, 425: 39–44

    Article  Google Scholar 

  • Bolfan-Casanova N, Keppler H, Rubie D C. 2003. Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite. Geophys Res Lett, 30: 1905, doi: 10.1029/2003GL-017182

    Article  Google Scholar 

  • Bolfan-Casanova N, Mackwell S, Keppler H, McCammon C, Rubie D C. 2002. Pressure dependence of H solubility in magnesiowüstite up to 25 GPa: Implications for the storage of water in the Earth’s lower mantle. Geophys Res Lett, 29: 1449, doi: 10.1029/2001GL014457

  • Dasgupta R. 2013. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Geophys Res, 75: 183–229.

    Google Scholar 

  • Dasgupta R, Mallik A, Tsuno K, Withers A C, Hirth G, Hirschmann M M. 2013. Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature, 493: 211–215

    Article  Google Scholar 

  • Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662–665

    Article  Google Scholar 

  • Dixon J E, Leist L, Langmuir C, Schilling J G. 2002. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature, 420: 385–389

    Article  Google Scholar 

  • Evans R L. 2014. Geophysics: Making the Earth move. Nature, 509: 40–41

    Article  Google Scholar 

  • Evans R L, Hirth G, Baba K, Forsyth D, Chave A, Mackie R. 2005. Geophysical evidence from the MELT area for compositional controls on oceanic plates. Nature, 437: 249–252

    Article  Google Scholar 

  • Ferot A, Bolfan-Casanova N. 2012. Water storage capacity in olivine and pyroxene to 14 GPa: Implications for the water content of the Earth’s upper mantle and nature of seismic discontinuities. Earth Planet Sci Lett, 349: 218–230

    Article  Google Scholar 

  • Gaillard F. 2004. Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure. Earth Planet Sci Lett, 218: 215–228

    Article  Google Scholar 

  • Green D H, Hibberson W O, Kovács I, Rosenthal A. 2010. Water and its influence on the lithosphere-asthenosphere boundary. Nature, 467: 448–451

    Article  Google Scholar 

  • Green D H, Hibberson W O, Rosenthal A, Kovács I, Yaxley G M, Falloon T J, Brink F. 2014. Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J Petrol, 55: 2067–2096

    Article  Google Scholar 

  • Grove T L, Chatterjee N, Parman S W, Médard E. 2006. The influence of H2O on mantle wedge melting. Earth Planet Sci Lett, 249: 74–89

    Article  Google Scholar 

  • Guo X, Chen Q, Ni H. 2016. Electrical conductivity measurement of hydrous silicate melts and water-rich fluid: Implications for melt/fluid in the Earth interior. Sci China Earth Sci, doi: 10.1007/s11430-016-5267-y

    Google Scholar 

  • Hack A C, Thompson A B, Aerts M. 2007. Phase relations involving hydrous silicate melts, aqueous fluids, and minerals. Rev Mineral Geochem, 65: 129–185

    Article  Google Scholar 

  • Hauri E H, Gaetani G A, Green T H. 2006. Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet Sci Lett, 248: 715–734

    Article  Google Scholar 

  • Hermann J, Spandler C, Hack A, Korsakov A V. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos, 92: 399–417

    Article  Google Scholar 

  • Hirschmann M M. 2000. Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem Geophys Geosyst, 1, doi: 10.1029/2000GC000070

    Google Scholar 

  • Hirschmann M M. 2006. Water, melting, and the deep Earth H2O cycle. Annu Rev Earth Planet Sci, 34: 629–653

    Article  Google Scholar 

  • Hirschmann M M, Aubaud C, Withers A C. 2005. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle. Earth Planet Sci Lett, 236: 167–181

    Article  Google Scholar 

  • Hirschmann M M, Tenner T, Aubaud C, Withers A C. 2009. Dehydration melting of nominally anhydrous mantle: The primacy of partitioning. Phys Earth Planet Inter, 176: 54–68

    Article  Google Scholar 

  • Hodges F. 1974. The solubility of H2O in silicate melts. Year Book Carneg Inst Washington, 73: 251–255

    Google Scholar 

  • Hui H, Zhang Y. 2007. Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim Cosmochim Acta, 71: 403–416

    Article  Google Scholar 

  • Jing Z, Karato S I. 2012. Effect of H2O on the density of silicate melts at high pressures: Static experiments and the application of a modified hard-sphere model of equation of state. Geochim Cosmochim Acta, 85: 357–372

    Article  Google Scholar 

  • Johnson E A. 2006. Water in nominally anhydrous crustal minerals: speciation, concentration, and geologic significance. Rev Mineral Geochem, 62: 117–154

    Article  Google Scholar 

  • Karato S I. 2012. On the origin of the asthenosphere. Earth Planet Sci Lett, 321–322: 95–103

    Article  Google Scholar 

  • Katz R F, Spiegelman M, Langmuir C H. 2003. A new parameterization of hydrous mantle melting. Geochem Geophys Geosyst, 4: 1073, doi: 10.1029/2002GC000433

    Google Scholar 

  • Kawakatsu H, Kumar P, Takei Y, Shinohara M, Kanazawa T, Araki E, Suyehiro K. 2009. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates. Science, 324: 499–502

    Google Scholar 

  • Keppler H. 2013. Volatiles under High Pressure. Phys Chem Deep Earth, 3–37

    Google Scholar 

  • Keppler H, Bolfan-Casanova N. 2006. Thermodynamics of water solubility and partitioning. Rev Mineral Geochem, 62: 193–230

    Article  Google Scholar 

  • Kessel R, Ulmer P, Pettke T, Schmidt M W, Thompson A B. 2005a. The water-basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400°C. Earth Planet Sci Lett, 237: 873–892

    Article  Google Scholar 

  • Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005b. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437: 724–727

    Article  Google Scholar 

  • Kimura J I, Nakajima J. 2014. Behaviour of subducted water and its role in magma genesis in the NE Japan arc: A combined geophysical and geochemical approach. Geochim Cosmochim Acta, 143: 165–188

    Article  Google Scholar 

  • Koga K, Hauri E H, Hirschmann M M, Bell D. 2003. Hydrogen concentration analyses using SIMS and FTIR: comparison and calibration for nominally anhydrous minerals. Geochem Geophys Geosyst, 4: 1019, doi: 10.1029/2002GC000378

    Article  Google Scholar 

  • Kohlstedt D, Keppler H, Rubie D. 1996. Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4. Contrib Mineral Petrol, 123: 345–357

    Article  Google Scholar 

  • Lambert I B, Wyllie P J. 1972. Melting of a gabbro (qtz eclogite) with excess H2O to 35 kbars with geological applications. J Geol, 80: 693–708

    Article  Google Scholar 

  • Litasov K, Ohtani E, Langenhorst F, Yurimoto H, Kubo T, Kondo T. 2003. Water solubility in Mg-perovskites and water storage capacity in the lower mantle. Earth Planet Sci Lett, 211: 189–203

    Article  Google Scholar 

  • Liu X, O’Neill H S C, Berry A J. 2006. The effects of small amounts of H2O, CO2 and Na2O on the partial melting of spinel lherzolite in the system CaO-MgO-Al2O3-SiO2±H2O±CO2±Na2O at 1.1 GPa. J Petrol, 47: 409–434

    Article  Google Scholar 

  • Malfait W J, Xue X. 2010. The nature of hydroxyl groups in aluminosilicate glasses: Quantifying Si-OH and Al-OH abundances along the SiO2-NaAlSiO4 join by 1H, 27Al-1H and 29Si-1H NMR spectroscopy. Geochim Cosmochim Acta, 74: 719–737

    Article  Google Scholar 

  • Manning C E. 2004. The chemistry of subduction-zone fluids. Earth Planet Sci Lett, 223: 1–16

    Article  Google Scholar 

  • Matsukage K N, Jing Z, Karato S I. 2005. Density of hydrous silicate melt at the conditions of Earth’s deep upper mantle. Nature, 438: 488–491

    Article  Google Scholar 

  • Mibe K, Kawamoto T, Matsukage K N, Fei Y, Ono S. 2011. Slab melting versus slab dehydration in subduction-zone magmatism. Proc Natl Acad Sci USA, 108: 8177–8182

    Article  Google Scholar 

  • Michael P. 1995. Regionally distinctive sources of depleted MORB: Evidence from trace elements and H2O. Earth Planet Sci Lett, 131: 301–320

    Article  Google Scholar 

  • Mierdel K, Keppler H, Smyth J R, Langenhorst F. 2007. Water solubility in aluminous orthopyroxene and the origin of Earth’s asthenosphere. Science, 315: 364–368

    Article  Google Scholar 

  • Mookherjee M, Stixrude L, Karki B B. 2008. Hydrous silicate melt at high pressure. Nature, 452: 983–986

    Article  Google Scholar 

  • Murakami M, Hirose K, Yurimoto H, Nakashima S, Takafuji N. 2002. Water in Earth’s lower mantle. Science, 295: 1885–1887

    Article  Google Scholar 

  • Naif S, Key K, Constable S, Evans R L. 2013. Melt-rich channel observed at the lithosphere-asthenosphere boundary. Nature, 495: 356–359

    Article  Google Scholar 

  • Ni H, Keppler H, Behrens H. 2011. Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle. Contrib Mineral Petrol, 162: 637–650

    Article  Google Scholar 

  • Ni H, Xu Z, Zhang Y. 2013. Hydroxyl and molecular H2O diffusivity in a haploandesitic melt. Geochim Cosmochim Acta, 103: 36–48

    Article  Google Scholar 

  • Ni H. 2013. Advances and application in physicochemical properties of silicate melts (in Chinese). Chin Sci Bull 58: 865–890

    Article  Google Scholar 

  • Novella D, Frost D J, Hauri E H, Bureau H, Raepsaet C, Roberge M. 2014. The distribution of H2O between silicate melt and nominally anhydrous peridotite and the onset of hydrous melting in the deep upper mantle. Earth Planet Sci Lett, 400: 1–13

    Article  Google Scholar 

  • O’Leary J A, Gaetani G A, Hauri E H. 2010. The effect of tetrahedral Al3+ on the partitioning of water between clinopyroxene and silicate melt. Earth Planet Sci Lett, 297: 111–120

    Article  Google Scholar 

  • Ochs F A, Lange R A. 1999. The density of hydrous magmatic liquids. Science, 283: 1314–1317

    Article  Google Scholar 

  • Pearson D, Brenker F, Nestola F, McNeill J, Hutchison M T, Matveev K, Mather K, Silvermit G, Schmitz S, Vekemans B, Vincze L. 2014. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507: 221–224

    Article  Google Scholar 

  • Poli S, Schmidt M W. 2002. Petrology of subducted slabs. Annu Rev Earth Planet Sci, 30: 207–235

    Article  Google Scholar 

  • Prouteau G, Scaillet B, Pichavant M, Maury R. 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410: 197–200

    Article  Google Scholar 

  • Revenaugh J, Sipkin S. 1994. Seismic evidence for silicate melt atop the 410-km mantle discontinuity. Nature, 369: 474–476

    Article  Google Scholar 

  • Richet P, Lejeune A M, Holtz F, Roux J. 1996. Water and the viscosity of andesite melts. Chem Geol, 128: 185–197

    Article  Google Scholar 

  • Rumble D, Liou J G, Jahn B M. 2003. Continental crust subduction and ultrahigh pressure metamorphism. Treat Geochem, 3: 293–319

    Article  Google Scholar 

  • Sakamaki T, Suzuki A, Ohtani E. 2006. Stability of hydrous melt at the base of the Earth’s upper mantle. Nature, 439: 192–194

    Article  Google Scholar 

  • Salters V J M, Hart S R. 1989. The hafnium paradox and the role of garnet in the source of mid-ocean-ridge basalts. Nature, 342: 420–422

    Article  Google Scholar 

  • Salters V J M, Stracke A. 2004. Composition of the depleted mantle. Geochem Geophys Geosyst, 5: Q05004, doi: 10.1029/2003GC000597

  • Schmandt B, Jacobsen S D, Becker T W, Liu Z, Dueker K G. 2014. Dehydration melting at the top of the lower mantle. Science, 344: 1265–1268

    Article  Google Scholar 

  • Shen A H, Keppler H. 1997. Direct observation of complete miscibility in the albite-H2O system. Nature, 385: 710–712

    Article  Google Scholar 

  • Sifré D, Gardés E, Massuyeau M, Hashim L, Hier-Majumder S, Gaillard F. 2014. Electrical conductivity during incipient melting in the oceanic low-velocity zone. Nature, 509: 81–85

    Article  Google Scholar 

  • Skogby H. 2006. Water in natural mantle minerals I: Pyroxenes. Rev Mineral Geochem, 62: 155–167

    Article  Google Scholar 

  • Smyth J R. 2006. Hydrogen in high pressure silicate and oxide mineral structures. Rev Mineral Geochem, 62: 85–115

    Article  Google Scholar 

  • Stern R J. 2002. Subduction zones. Rev Geophys, 40: 1012, doi: 10.1029/2001RG000108

    Article  Google Scholar 

  • Stolper E M. 1982. The speciation of water in silicate melts. Geochim Cosmochim Acta, 46: 2609–2620

    Article  Google Scholar 

  • Tauzin B, Debayle E, Wittlinger G. 2010. Seismic evidence for a global low-velocity layer within the Earth’s upper mantle. Nature Geosci, 3: 718–721

    Article  Google Scholar 

  • Tenner T J, Hirschmann M M, Withers A C, Ardia P. 2012. H2O storage capacity of olivine and low-Ca pyroxene from 10 to 13 GPa: Consequences for dehydration melting above the transition zone. Contrib Mineral Petrol, 163: 297–316

    Article  Google Scholar 

  • Tenner T J, Hirschmann M M, Withers A C, Hervig R L. 2009. Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and applications to hydrous peridotite partial melting. Chem Geol, 262: 42–56

    Article  Google Scholar 

  • Till C B, Grove T L, Withers A C. 2012. The beginnings of hydrous mantle wedge melting. Contrib Mineral Petrol, 163: 669–688

    Article  Google Scholar 

  • Toffelmier D A, Tyburczy J A. 2007. Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States. Nature, 447: 991–994

    Article  Google Scholar 

  • Watson E B. 1981. Diffusion in magmas at depth in the earth: the effects of pressure and dissolved H2O. Earth Planet Sci Lett, 52: 291–301

    Article  Google Scholar 

  • Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett, 231: 53–72

    Article  Google Scholar 

  • Yang X. 2013. The origin of electrical anomalies in the uppermost mantle. Acta Petrol Mineral, 32: 663–679

    Google Scholar 

  • Yoshino T, Katsura T. 2013. Electrical conductivity of mantle minerals: Role of water in conductivity anomalies. Annu Rev Earth Planet Sci, 41: 605–628

    Article  Google Scholar 

  • Yoshino T, Matsuzaki T, Yamashita S, Katsura T. 2006. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature, 443: 973–976

    Article  Google Scholar 

  • Zhang L, Meng Y, Yang W, Wang L, Mao W L, Zeng Q S, Jeong J S, Wagner A J, Mkhoyam A, Liu W, Xu R, Mao H-K. 2014. Disproportionation of (Mg, Fe) SiO3 perovskite in Earth’s deep lower mantle. Science, 344: 877–882

    Article  Google Scholar 

  • Zhang Y X, Ni H, Chen Y. 2010. Diffusion data in silicate melts. Rev Mineral Geochem, 72: 311–408

    Article  Google Scholar 

  • Zhang Y X, Stolper E M, Wasserburg G. 1991. Diffusion of water in rhyolitic glasses. Geochim Cosmochim Acta, 55: 441–456

    Article  Google Scholar 

  • Zheng Y F, Fu B, Gong B, Li L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth Sci Rev, 62: 105–161

    Article  Google Scholar 

  • Zheng Y F, Xia Q X, Chen R X, Gao X Y. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth Sci Rev, 107: 342–374

    Article  Google Scholar 

  • Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48

    Article  Google Scholar 

  • Zheng Y F, Hermann J. 2014. Geochemistry of continental subductionzone fluids. Earth Planet Space, 66: 93

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuaiWei Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, H., Zhang, L. & Guo, X. Water and partial melting of Earth’s mantle. Sci. China Earth Sci. 59, 720–730 (2016). https://doi.org/10.1007/s11430-015-5254-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5254-8

Keywords

Navigation