Skip to main content
Log in

High-P/T experimental studies and water in the silicate mantle

  • Research Paper
  • Special Topic: Water in the Earth’s interior
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Water (or H) in the silicate mantle is a key element in influencing Earth’s climate, habitability, geochemical evolution, geophysical properties and geodynamical processes, and has received increasing attention in the past decades. Experimental work under simulated high-pressure and high-temperature conditions is a powerful tool in characterizing the species, distribution, storage capacity and various physicochemical impacts of water in the mantle. In recent years, significant approaches have been acquired about some key physical, chemical and dynamical properties of water in the mantle and their various impacts, as a result of extensive studies by high-pressure and temperature experiments, and our knowledge of Earth’s water cycle, especially the deep water cycle, on both temporal and spatial scales has been greatly enhanced. In this paper, a brief review based mainly on experimental studies is presented concerning the current understanding and some recent approaches of water in the silicate mantle, such as the possible origin, amount, storage and the effect on mantle properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albarède F. 2009. Volatile accretion history of the terrestrial planets and dynamic implications. Nature, 461: 1227–1233

    Article  Google Scholar 

  • Andersen T, Neumann E R. 2001. Fluid inclusions in mantle xenoliths. Lithos, 55: 301–320

    Article  Google Scholar 

  • Anderson D L, Spetzler H A W. 1970. Partial melting and low velocity zone. Phys Earth Planet Inter, 4: 62–64

    Article  Google Scholar 

  • Ardia P, Hirschmann M M, Withers A C, Tenner T J. 2012. H2O storage capacity of olivine at 5–8 GPa and consequences for dehydration partial melting of the upper mantle. Earth Planet Sci Lett, 345–348: 104–116

    Article  Google Scholar 

  • Asimow P D, Langmuir C H. 2003. The importance of water to oceanic mantle melting regimes. Nature, 421: 815–820

    Article  Google Scholar 

  • Aubaud C, Hauri E H, Hirschmann M M. 2004. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys Res Lett, 31: L20611, doi: 10.1029/2004GL021341

    Article  Google Scholar 

  • Bai Q, Kohlstedt D L. 1992. Substantial hydrogen solubility in olivine and implications for water storage in the mantle. Nature, 357: 672–674

    Article  Google Scholar 

  • Bali E, Bolfan-Casanova N, Koga K T. 2008. Pressure and temperature dependence of H solubility in forsterite: An implication to water activity in the Earth interior. Earth Planet Sci Lett, 268: 354–363

    Article  Google Scholar 

  • Bell D R, Rossman G R. 1992. Water in Earth’s mantle: The role of nominally anhydrous minerals. Science, 255: 1391–1397

    Article  Google Scholar 

  • Bercovici D, Karato S. 2003. Whole-mantle convection and the transition-zone water filter. Nature, 425: 39–44

    Article  Google Scholar 

  • Bolfan-Casanova N, Keppler H, Rubie D C. 2000. Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: Implications for the distribution of water in the Earth’s mantle. Earth Planet Sci Lett, 182: 209–221

    Article  Google Scholar 

  • Bolfan-Casanova N, Keppler H, Rubie D C. 2003. Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite. Geophys Res Lett, 30: 1905, doi: 10.1029/2003GL017182

    Article  Google Scholar 

  • Bolfan-Casanova N, Mackwell S, Keppler H, Mc Cammon C, Rubie D C. 2002. Pressure dependence of H solubility in magnesiowüstite up to 25 GPa: Implications for the storage of water in the Earth’s lower mantle. Geophys Res Lett, 29: 1029–1032

    Article  Google Scholar 

  • Boss A P. 1998. Temperatures in protoplanetary disks. Annu Rev Earth Planet Sci, 26: 26–53

    Article  Google Scholar 

  • Bromiley G D, Keppler H. 2004. An experimental investigation of hydroxyl solubility in jadeite and Na-rich clinopyroxenes. Contrib Mineral Petrol, 147: 189–200

    Article  Google Scholar 

  • Bromiley G D, Keppler H, McCammon C, Bromiley F A, Jacobsen S D. 2004. Hydrogen solubility and speciation in natural, gem-quality chromian diopside. Am Mineral, 89: 941–949

    Article  Google Scholar 

  • Bureau H, Keppler H. 1999. Complete miscibility between silicate melts and hydrous fluids in the upper mantle: Experimental evidence and geochemical implications. Earth Planet Sci Lett, 165: 187–196

    Article  Google Scholar 

  • Costa F, Charkraborty S. 2008. The effect of water on Si and O diffusion rates in olivine and implications for transport properties and processes in the upper mantle. Phys Earth Planet Inter, 166: 11–29

    Article  Google Scholar 

  • Dai L, Karato S I. 2009a. Electrical conductivity of pyrope-rich garnet at high temperature and high pressure. Phys Earth Planet Inter, 176: 83–88

    Article  Google Scholar 

  • Dai L, Karato S I. 2009b. Electrical conductivity of wadsleyite at high temperatures and high pressures. Earth Planet Sci Lett, 287: 277–283

    Article  Google Scholar 

  • Demouchy S, Deloule E, Frost D J, Keppler H. 2005. Pressure and temperature-dependence of water solubility in Fe-free wadsleyite. Am Mineral, 90: 1084–1091

    Article  Google Scholar 

  • Demouchy S, Jacobsen S D, Gaillard F, Stern C R. 2006. Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology, 34: 429–432

    Article  Google Scholar 

  • Drake M, Righter K. 2002. Determining the composition of the Earth. Nature, 416: 39–44

    Article  Google Scholar 

  • Drake M J. 2005. Origin of water in the terrestrial planets. Meteorit Planet Sci, 40: 519–527

    Article  Google Scholar 

  • Du Frane W L, Tyburczy J A. 2012. Deuterium-hydrogen interdiffusion in olivine: Implications for point defects and electrical conductivity. Geoch Geophy Geosys, 13: Q03004, doi: 10.1029/2011GC003895

    Google Scholar 

  • Férot A, Bolfan-Casanova N. 2012. Water storage capacity in olivine and pyroxene to 14 GPa: Implications for the water content of the Earth’s upper mantle and nature of seismic discontinuities. Earth Planet Sci Lett, 349–350: 218–230

    Article  Google Scholar 

  • Fei H, Wiedenbeck M, Yamazaki D, Katsura T. 2013. Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients. Nature, 498: 213–215

    Article  Google Scholar 

  • Fischer K M, Ford H A, Abt D L, Rychert C A. 2010. The lithosphereasthenosphere boundary. Annu Rev Earth Planet Sci. 38: 549–573

    Article  Google Scholar 

  • Frost D J. 2006. The stability of hydrous mantle phases. Rev Mineral Geochem, 62: 243–271

    Article  Google Scholar 

  • Frost D J. 2008. The upper mantle and transition zone. Elements, 4: 171–176

    Article  Google Scholar 

  • Frost D J, Dolejš D. 2007. Experimental determination of the effect H2O on the 410-km seismic discontinuity. Earth Planet Sci Lett, 256: 182–195

    Article  Google Scholar 

  • Frost D J, McCammon C A. 2008. The redox state of the Earth’s mantle. Annu Rev Earth Planet Sci, 36: 389–420

    Article  Google Scholar 

  • Genda H, Ikoma M. 2008. Origin of the ocean on the Earth: Early evolution of water D/H in a hydrogen-rich atmosphere. Icarus, 194: 42–52

    Article  Google Scholar 

  • Green D H, Hibberson W O, Kovacs I, Rosenthal A. 2010. Water and its influence on the lithosphere-asthenosphere boundary. Nature, 467: 448–504

    Article  Google Scholar 

  • Green II H W, Chen W P, Brudzinski M R. 2010. Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere. Nature, 467: 828–831

    Article  Google Scholar 

  • Hier-Majumder S, Anderson I M, Kohlstedt D L. 2005. Influence of protons on Fe-Mg interdiffusion in olivine. J Geophys Res, 110: B02202, doi: 10.1029/2004JB003292

    Google Scholar 

  • Hirschmann M. 2006. Water, melting, and the deep earth H2O cycle. Annu Rev Earth Planet Sci, 34: 629–653

    Article  Google Scholar 

  • Hirschmann M, Kohlstedt D L. 2012. Water in Earth’s mantle. Phys Today, 65: 40–45

    Article  Google Scholar 

  • Hirschmann M M. 2010. Partial melt in the oceanic low velocity zone. Phys Earth Planet Inter, 179: 60–71

    Article  Google Scholar 

  • Hirth G, Kohlstedt D L. 1996. Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett, 144: 93–108

    Article  Google Scholar 

  • Holtz F, Behrens H, Dingwell D B, Johannes W. 1995. H2O solubility in haplogranitic melts: Compositional, pressure and temperature dependence. Am Mineral, 80: 94–108

    Article  Google Scholar 

  • Huang X, Xu Y, Karato S I. 2005. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature, 434: 746–749

    Article  Google Scholar 

  • Ingrin J, Blanchard M. 2006. Diffusion of hydrogen in minerals. In: Keppler H, Smyth J R, eds. Water in Nominally Anhydrous Minerals. Washington D C: Mineralogical Society of America. 291–320

    Google Scholar 

  • Ingrin J, Skogby H. 2000. Hydrogen in nominally anhydrous upper-mantle minerals: Concentration levels and implications. Eur J Mineral, 12: 543–570

    Article  Google Scholar 

  • Inoue T, Yurimoto H, Kudoh Y. 1995. Hydrous modified spinel, Mg1.75SiH0.5O4: A new water reservior in the mantle transition region. Geophys Res Lett, 22: 117–120

    Article  Google Scholar 

  • Jacobsen S D, Smyth J R, Spetzler H, Holl C M, Frost D J. 2004. Sound velocities and elastic constants of iron-bearing hydrous rinwoodite. Phys Earth Planet Inter, 143–144: 47–56

    Article  Google Scholar 

  • Jacobsen S D, van der Lee S. 2006. Earth’s Deep Water Cycle. Washington D C: American Geophysical Union. 321

    Book  Google Scholar 

  • Jambon A, Zimmermann J L. 1990. Water in oceanic basalts: Evidence for dehydration of recycled crust. Earth Planet Sci Lett, 101: 323–331

    Article  Google Scholar 

  • Javoy M. 2005. Where do the oceans come from? C R Geoscience, 337: 139–158

    Article  Google Scholar 

  • Jin Z M, Green H W, Zhou Y. 1994. Melt topology in partially molten mantle peridotite during ductile deformation. Nature, 372: 164–167

    Article  Google Scholar 

  • Jung H, Karato S. 2001. Water-induced fabric transition in olivine. Science, 293: 1460–1463

    Article  Google Scholar 

  • Karato S. 1990. The role of hydrogen in the electrical conductivity of the upper mantle. Nature, 347: 272–273

    Article  Google Scholar 

  • Karato S. 2014. Does partial melting explain geophysical anomalies? Phys Earth Planet Inter, 228: 300–306

    Article  Google Scholar 

  • Karato S, Jung H. 1998. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth Planet Sci Lett, 157: 193–207

    Article  Google Scholar 

  • Karato S I. 2006. Remote Sensing of Hydrogen in Earth’s Mantle. In: Keppler H, Smyth J R, eds. Water in Nominally Anhydrous Minerals. Washington D C: Mineralogical Society of America. 343–375

    Google Scholar 

  • Kawakatsu H, Kumar P, Takei Y, Shinohara M, Kanazawa T, Araki E, Suyehiro K. 2009. Seismic evidence for sharp lithosphereasthenosphere boundaries of oceanic plates. Science, 324: 499–502

    Google Scholar 

  • Kawamoto T, Hervig R L, Holloway H R. 1996. Experimental evidence for a hydrous transition zone in the early Earth’s mantle. Earth Planet Sci Lett, 142: 587–592

    Article  Google Scholar 

  • Keppler H. 2003. Water solubility in carbonatite melts. Am Mineral, 88: 1822–1824

    Article  Google Scholar 

  • Keppler H, Smyth J R. 2006. Water in Nominally Anhydrous Minerals. Washington D C: Mineralogical Society of America. 478

    Google Scholar 

  • Kohlstedt D L, Keppler H, Rubie D C. 1996. Solubility of water in the a, ß, and ? phases of (Mg, Fe)2SiO4. Contrib Mineral Petrol, 123: 345–357

    Article  Google Scholar 

  • Kohlstedt D L, Mackwell S J. 1998. Diffusion of hydrogen and intrinsic point defects in olivine. Z Phys Chem, 207: 147–162

    Article  Google Scholar 

  • Koster van Groos A F. 1990. High-pressure DTA stduy of the upper three-phase region in the system Na2CO3-H2O. Am Mineral, 75: 667–675

    Google Scholar 

  • Kyser T K, O’ Neil J R. 1984. Hydrogen isotope systematics of submarine basalts. Geochim Cosmochim Acta, 48: 2123–2133

    Article  Google Scholar 

  • Litasov K, Ohtani E, Langenhorst F, Yurimoto H, Kubo T, Kondo T. 2003. Water solubility in Mg-perovskites, and water storage capacity in the lower mantle. Earth Planet Sci Lett, 211: 189–203

    Article  Google Scholar 

  • Litasov K D, Ohtani E, Kagi H, Jacobsen S D, Ghosh S. 2007. Temperature dependence and mechanism of hydrogen incorporation in olivine at 12.5–14.0 GPa. Geophys Res Lett, 34: L16314, doi: 16310.11029/12007GL030737

    Article  Google Scholar 

  • Lu R, Keppler H. 1997. Water solubility in pyrope to 100 kbar. Contrib Mineral Petrol, 129: 35–42

    Article  Google Scholar 

  • Mackwell S J, Kohlstedt D L, Paterson M S. 1985. The role of water in the deformation of olivine single crystals. J Geophys Res, 90: 11319–11333

    Article  Google Scholar 

  • Manning C E, Shock E L, Sverjensky D A. 2013. The chemistry of carbon in aqueous fluids at crustal and upper-mantle conditions: Experimental and theoretical constraints. Rev Mineral Geochem, 75: 109–148

    Article  Google Scholar 

  • Marty B. 2012. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet Sci Lett, 313–314: 56–66

    Article  Google Scholar 

  • Marty B, Yokochi R. 2006. Water in the Early Earth. In: Keppler H, Smyth J R eds. Water in Nominally Anhydrous Minerals. Rev Mineral Geochem, 62: 421–450

    Article  Google Scholar 

  • McMillan P F, Akaogi M, Sato R K, Poe B T, Foley J. 1991. Hydroxyl groups in MgSiO4. Am Mineral, 76: 354–360

    Google Scholar 

  • Mei S, Kohlstedt D L. 2000. Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J Geophys Res, 105: 21471–21481

    Article  Google Scholar 

  • Menzies M A, Hawkesworth C J. 1987. Mantle Metasomatism. London: Academic Press Inc. 472

    Google Scholar 

  • Mierdel K, Keppler H. 2004. The temperature dependence of water solubility in enstatite. Contrib Mineral Petrol, 148: 305–311

    Article  Google Scholar 

  • Mierdel K, Keppler H, Smyth J R, Langenhorst F. 2007. Water solubility in aluminous orthopyroxene and the origin of Earth’s asthenosphere. Science, 315: 364–368

    Article  Google Scholar 

  • Mojzsis S J, Harrison T M, Pidgeon R T. 2001. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4300 Myr ago. Nature, 409: 178–181

    Article  Google Scholar 

  • Morbidelli A, Chambers J, Lunine J I, Petit J M, Robert F, Valsecchi G B, Cyr K E. 2000. Source regions and timescales for the delivery of water to the Earth. Meteorit Planet Sci, 35: 1309–1320

    Article  Google Scholar 

  • Mookherjee M, Karato S. 2010. Solubility of water in pyrope-rich garnet at high pressures and temperature. Geophys Res Lett, 37: L03310, doi: 10.1029/2009GL041289

    Article  Google Scholar 

  • Mosenfelder J L, Deligne N I, Asimow P D, Rossman G R. 2006. Hydrogen incorporation in olivine from 2–12 GPa. Am Mineral, 91: 285–294

    Article  Google Scholar 

  • Murakami M, Hirose K, Yurimoto H, Nakashima S, Takafuji N. 2002. Water in Earth’s lower mantle. Science, 295: 1885–1887

    Article  Google Scholar 

  • Nishi M, Irifune T, Tsuchiya J, Tange Y, Nishihara Y, Fujino K, Higo Y. 2014. Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nat Geosci, 7: 224–227

    Article  Google Scholar 

  • Nixon P H. 1987. Mantle Xenoliths. Chichester: John Wiley & Sons Ltd. 844

    Google Scholar 

  • Ohtani E, Mizobata H, Yurimoto H. 2000. Stability of dense hydrous magnesium silicate phases in the systems Mg2SiO4-H2O and MgSiO3-H2O at pressures up to 27 GPa. Phys Chem Miner, 27: 533–544

    Article  Google Scholar 

  • Panero W R, Pigott J S, Reaman D M, Kabbes J E, Liu Z. 2015. Dry (Mg, Fe)SiO3 perovskite in the Earth's lower mantle. J Geophys Res, 120: 894–908

    Article  Google Scholar 

  • Pearson D G, Brenker F E, Nestola F, Mc Neill J, Nasdala L, Hutchison M T, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L. 2014. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507: 221–224

    Article  Google Scholar 

  • Peslier A H, Luhr J F. 2006. Hydrogen loss from olivines in mantle xenoliths from Simcoe (USA) and Mexico: Mafic alkalic magma ascent rates and water budget of the sub-continental lithosphere. Earth Planet Sci Lett, 242: 302–319

    Article  Google Scholar 

  • Plank T, Langmuir C H. 1992. Effects of melting regime on the composition of the oceanic crust. J Geophys Res, 97: 19749–19770

    Article  Google Scholar 

  • Rüpke L H, Phipps Morgan J, Hort M, Connolly J A D. 2004. Serpentine and the subduction zone water cycle. Earth Planet Sci Lett, 223: 17–34

    Article  Google Scholar 

  • Rauch M, Keppler H. 2002. Water solubility in orthopyroxene. Contrib Mineral Petrol, 143: 525–536

    Article  Google Scholar 

  • Richard G, Monnereau M, Ingrin J. 2002. Is the transition zone an empty water reservoir? Inferences from numerical model of mantle dynamics. Earth Planet Sci Lett, 205: 37–51

    Article  Google Scholar 

  • Roden M F, Murthy V R. 1985. Mantle metasomatism. Annu Rev Earth Planet Sci, 13: 269–296

    Article  Google Scholar 

  • Saal A E, Hauri E H, Langmuir C H, Perfit M R. 2002. Vapor undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature, 419: 451–455

    Article  Google Scholar 

  • Sarafian A R, Nielsen S G, Marschall H R, Mc Cubbin F M, Monteleone B D. 2014. Early accretion of water in the inner solar system from a carbonaceous chondrite-like source. Science, 346: 623–626

    Article  Google Scholar 

  • Schmandt B, Jacobsen S D, Becker T W, Liu Z, Gueker K G. 2014. Dehydration melting at the top of the lower mantle. Science, 344: 1265–1268

    Article  Google Scholar 

  • Shen A H, Keppler H. 1997. Direct observation of complete miscibility in the albite-H2O system. Nature, 385: 710–712

    Article  Google Scholar 

  • Shishkina T A, Botcharnikov R E, Holtz F, Almeev R R, Portnyagin M V. 2010. Solubility of H2O- and CO2-bearing fluids in tholeitic basalts at pressures up to 500 MPa. Chem Geol, 277: 115–125

    Article  Google Scholar 

  • Smyth J R, Frost D J, Nestola F, Holl C M, Bromiley G. 2006. Olivine hydration in the deep upper mantle: Evidence of temperature and silica activity. Geophys Res Lett, 33: L15301, doi: 15310.11029/12006GL026194

    Article  Google Scholar 

  • Valley J W, Peck W H, King E M, Wilde S A. 2002. A cool early Earth. Geology, 30: 351–354

    Article  Google Scholar 

  • Wallace P J. 2005. Volatiles in subduction zone magmas: Concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res, 140: 217–240

    Article  Google Scholar 

  • Wang D, Mookherjee M, Xu Y, Karato S. 2006. The effect of water on the electrical conductivity of olivine. Nature, 443: 977–980

    Article  Google Scholar 

  • Wilde S A, Valley J W, Peck W H, Graham C M. 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409: 175–178

    Article  Google Scholar 

  • Williams Q, Hemley R J. 2001. Hydrogen in the deep earth. Annu Rev Earth Planet Sci, 29: 365–418

    Article  Google Scholar 

  • Withers A C, Wood B J, Carroll M R. 1998. The OH content of pyrope at high pressure. Chem Geol, 147: 161–171

    Article  Google Scholar 

  • Yang X. 2012. Orientation-related electrical conductivity of hydrous olivine, clinopyroxene and plagioclase and implications for the structure of the lower continental crust and uppermost mantle. Earth Planet Sci Lett, 317–318: 241–250

    Article  Google Scholar 

  • Yang X Z. 2014. Electrical petrology: Principles, methods and advances (in Chinese). Sci Sin Terrae, 44: 1884–1990

    Google Scholar 

  • Yang X. 2015a. A brief introduction of high temperature and high pressure experimental geosciences; methods and advances (in Chinese). Bull Mineral Petrol Geochem, 34: 509–525

    Google Scholar 

  • Yang X. 2015b. OH solubility in olivine in the peridotite-COH system under reducing conditions and implications for water storage and hydrous melting in the reducing upper mantle. Earth Planet Sci Lett, 432: 199–209

    Article  Google Scholar 

  • Yang X, Gaillard F, Scaillet B. 2014a. A relatively reduced Hadean continental crust and implications for the early atmosphere and crustal rheology. Earth Planet Sci Lett, 393: 210–219

    Article  Google Scholar 

  • Yang X, Keppler H, Dubrovinsky L, Kurnosov A. 2014b. In-situ infrared spectra of hydroxyl in wadsleyite and ringwoodite at high pressure and high temperature. Am Mineral, 99: 724–729

    Article  Google Scholar 

  • Yang X, Keppler H, McCammon C, Ni H. 2012. Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contrib Mineral Petrol, 163: 33–48

    Article  Google Scholar 

  • Yang X, Liu D, Xia Q. 2014c. CO2-induced small water solubility in olivine and implications for properties of the shallow mantle. Earth Planet Sci Lett, 403: 37–47

    Article  Google Scholar 

  • Yang X, Mc Cammon C. 2012. Fe3+-rich augite and high electrical conductivity in the deep lithosphere. Geology, 40: 131–134

    Article  Google Scholar 

  • Yoshino T, Katsura T. 2013. Electrical conductivity of mantle minerals: Role of water in conductivity anomalies. Annu Rev Earth Planet Sci, 41: 605–628

    Article  Google Scholar 

  • Yoshino T, Manthilake G, Matsuzaki T, Katsura T. 2008. Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature, 451: 326–329

    Article  Google Scholar 

  • Yoshino T, Matsuzaki T, Shatskiy A, Katsura T. 2009. The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet Sci Lett, 288: 291–300

    Article  Google Scholar 

  • Young T E, Green II H W, Hofmeister A M, Walker D. 1993. Infrared spectroscopic investigation of hydroxyl in -(Mg, Fe)2SiO4 and coexisting olivine: Implications for mantle evolution and dynamics. Phys Chem Miner, 19: 409–422

    Article  Google Scholar 

  • Zhang B H, Yoshino T, Wu X P, Matsuzaki T, Shan S, Katsura T. 2012. Electrical conductivitity of enstatite as a function of water content: Implications for the electrical structure in the upper mantle. Earth Planet Sci Lett, 357–358: 11–20

    Article  Google Scholar 

  • Zhao Y H, Ginsberg S B, Kohlstedt D L. 2004. Solubility of hydrogen in olivine: Dependence on temperature and iron content. Contrib Mineral Petrol, 147: 155–161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoZhi Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Li, Y. High-P/T experimental studies and water in the silicate mantle. Sci. China Earth Sci. 59, 683–695 (2016). https://doi.org/10.1007/s11430-015-5241-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5241-0

Keywords

Navigation